Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 770–774 | Cite as

Effect of Nano-NiO Additive on Adhesion Strength and Bubble Structure of Vitreous Enamels

  • Jaemin Cha
  • Juhyeong Kim
  • Jaeyoung Shin
  • Bongki Ryu
Article
  • 27 Downloads

Abstract

The effect of NiO nanopowder on the adhesion strength and formation of fish-scales in vitreous enamels has been investigated. The results of a ball drop test indicated that the adhesion strength was greatly increased by a mill addition of NiO nanopowder. The adhesion strength and bubbling microstructure of the enamel were studied using optical and scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS) analysis. The results showed that, as a mill additive, NiO nanopowder changes the composition and structure at the enamel-steel interface and enables interdiffusion. In addition, as the amount of mill addition was increased, the size of the gas bubbles increased and the cracks of the enamel layer, generally referred to as fish-scaling, were reduced.

Keywords

Enamel Mill addition Adhesion Strength Bubble Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Donald and M. Judd, Proceedings of the 59th Porcelain Enamel Institute Technical Forum 15, 45 (2008).Google Scholar
  2. [2]
    S. Rossi, Z. Caterina and S. Ryan, Mater. Des. 55, 880 (2014).CrossRefGoogle Scholar
  3. [3]
    I. G. Berdzenishvili, Am. J. Mater. Sci. 6, 45 (2016).Google Scholar
  4. [4]
    L. G. Protasova, V. G. Kosenko and E. P. Farafontova, Glass Ceram. 60, 229 (2003).CrossRefGoogle Scholar
  5. [5]
    O. V. Shalygina, L. L. Bragina, G. I. Mironova and A. P. Odintsova, Glass Ceram. 71, 217 (2014).CrossRefGoogle Scholar
  6. [6]
    D. Ritchie, H. A. Schaeffer and D. White, J. Mater. Sci. 18, 599 (1983).ADSCrossRefGoogle Scholar
  7. [7]
    D. Fick, C. Layne, D. Gnizak and H. Evele, Ceram. Eng. Sci. Proc. 22, 107 (2001).Google Scholar
  8. [8]
    F. S. Shieu, K. C. Lin and J. C. Wong, Ceram. Int. 25, 27 (1999).CrossRefGoogle Scholar
  9. [9]
    M. Bodaghi and A. Davarpanah, Proc. Appl. Ceram. 5, 215 (2011).CrossRefGoogle Scholar
  10. [10]
    H. H. Liu, Y. Shueh, F. S. Yang and P. Shen, Mater. Sci. Eng. A 149, 217 (1992).CrossRefGoogle Scholar
  11. [11]
    D. P. Smith, Hydrogen in metals (University of Chicago Press, Chicago 1948).Google Scholar
  12. [12]
    C. G. Bergeron, J. Am. Ceram. Soc. 36, 373 (1953).CrossRefGoogle Scholar
  13. [13]
    X. Yang, A. Jha, R. Brydson and R. C. Cochrane, Mater. Sci. Eng. A 366, 254 (2004).CrossRefGoogle Scholar
  14. [14]
    L. Samiee, H. Sarpoolaky and A. Mirhabibi, Adv. Appl. Ceram. 107, 27 (2008).CrossRefGoogle Scholar
  15. [15]
    G. Ling and J. He, Mater. Sci. Eng. A 379, 432 (2004).CrossRefGoogle Scholar
  16. [16]
    J. Weizhong, W. Ying and D. Qi, Mater. Lett. 58, 1611 (2004).CrossRefGoogle Scholar
  17. [17]
    T. Ishihara, J. Korean Ceram. Soc., 53, 469 (2016).CrossRefGoogle Scholar
  18. [18]
    W. J. Nisbet, G. W. Lorimer, C. Sherhod and M. J. Stowell, Mater. Sci. Technol. 6, 182 (1990).CrossRefGoogle Scholar
  19. [19]
    X. Yang, A. Jha, R. Brydson and R. C. Cochrane, Thin Solid Films 443, 33 (2003).ADSCrossRefGoogle Scholar
  20. [20]
    P. S. Richard, J. Phys.: Condens. Matter 19, 033101 (2007).Google Scholar
  21. [21]
    E. D. Lacy, Acta Cryst. 18, 141 (1965).CrossRefGoogle Scholar
  22. [22]
    W. Vogel, N. Kreidl (Trans.) and E. Lense (Ed.), Chemistry of Glass (American Ceramic Society, 1985)Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Jaemin Cha
    • 1
  • Juhyeong Kim
    • 2
  • Jaeyoung Shin
    • 2
  • Bongki Ryu
    • 2
  1. 1.The Institute of Materials TechnologyPusan National UniversityBusanKorea
  2. 2.Division of Materials Science and EngineeringPusan National UniversityBusanKorea

Personalised recommendations