Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 755–764 | Cite as

Numerical Analysis on the Electrical and Thermal Flow Characteristics of Ar-N2 Inductively Coupled Plasma Torch System

Article
  • 8 Downloads

Abstract

Numerical analysis on the electrical and thermal flow characteristics of Ar-N2 inductively coupled plasma (ICP) were carried out for N2 content from 0 to 50 mol% at plasma power level of 50 kW. Firstly, the computational results of thermal flow fields revealed that the addition of N2 could reduce the radiation heat loss, together with increasing the exit enthalpy. For example, the radiation heat loss of Ar-N2 ICP with N2 content of 20 mol% is reduced by ∼ 33%, compared with that of Ar-only ICP, which are essential for the safe operation of an ICP system at the high power level of 50 kW. In addition, the increase of N2 content was also found to increase the load resistance of a tank circuit for a vacuum tube oscillator. Equivalent circuit analysis using the numerical results shows that this increase of the load resistance comes from the increasing equivalent resistance and the decreasing equivalent inductance of Ar-N2 ICP, corresponding to the changes of thermal flow fields with the increase of N2 content. For a tank circuit consisting of a capacitor and an inductor with a capacitance of 6,500 pF, and an equivalent inductance of 0.84 μH, the load resistance was calculated to be increased from 81 Ω for Ar only ICP to 130 Ω for Ar-N2 ICP with N2 content of 20 mol%. Considering the internal resistances of high power vacuum tubes higher than 130 Ω, this increase of load resistance clearly shows that N2 addition can improve the impedance mismatching of an ICP torch system with a vacuum tube oscillator having no variable part to tune the load resistance. By providing these basic data for the calculation of load resistance and thermal flow characteristics, the numerical analysis combined with equivalent circuit analysis used in this work can help in designing and operating a high-powered ICP torch system with a vacuum tube oscillator.

Keywords

Inductively coupled plasma (ICP) Thermal plasma Numerical analysis Equivalent circuit Vacuum tube oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. L. Girshick, C. P. Chiu and P. H. McMurry, Plasma Chem. Plasma Process. 8, 145 (1988).CrossRefGoogle Scholar
  2. [2]
    M. Shigeta, T. Watanabe and H. Nishiyama, Thin Solid Films 457, 192 (2004).ADSCrossRefGoogle Scholar
  3. [3]
    N. Y. M. Gonzalez, M. E. Morsli and P. Proulx, J. Therm. Spray Technol. 17, 533 (2008).ADSCrossRefGoogle Scholar
  4. [4]
    M. Y. Lee, J. S. Kim and J. H. Seo, Thin Solid Films 521, 60 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    J. H. Seo and B. G. Hong, Nucl. Eng. Technol. 44, 9 (2012).CrossRefGoogle Scholar
  6. [6]
    S. B. Punjabi, N. K. Joshi, H. A. Mangalvedekar, B. K. Lande, A. K. Das and D. C. Kothari, Phys. Plasmas 19, 012108 (2012).ADSCrossRefGoogle Scholar
  7. [7]
    H. Nishiyama, T. Sato, S. Ito, T. Sato and S. Kamiyama, Heat Mass Transf. 36, 433 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasmas: Fundamentals and Applications (Plenum Press, NewYork and London, 1994), Vol. 1.Google Scholar
  9. [9]
    S. Seely, Radio Electronics (McGraw-Hill Book Company, New York, 1956).Google Scholar
  10. [10]
    W. A. Edson, Vacuum-tube oscillators (John Willy & Sons, Inc., New York, 1953).Google Scholar
  11. [11]
    J. Kim, J. Mostaghimi and R. Iravani, IEEE Trans. Plasma Sci. 25, 1023 (1997).ADSCrossRefGoogle Scholar
  12. [12]
    M. P. Freeman and J. D. Chase, J. Appl. Phys. 39, 180 (1968).ADSCrossRefGoogle Scholar
  13. [13]
    M. I. Boulos, Pure & Appl. Chem. 57, 1321 (1985).CrossRefGoogle Scholar
  14. [14]
    www.thalesgroup.com, in catalogue of ITK 60-2 watercooled triode for industrial RF heating.Google Scholar
  15. [15]
    S. V. Patankar, Computational Fluid Flow and Heat Transfer (McGraw-Hill, New-York, 1980).MATHGoogle Scholar
  16. [16]
    P. Proulx, J. Mostaghimi and M. I. Boulos, Plasma Chem. Plasma Process. 7, 29 (1987).CrossRefGoogle Scholar
  17. [17]
    A. Chentouf, J. Fouladgar and G. Develey, IEEE Trans. Mag. 31, 2100 (1995).ADSCrossRefGoogle Scholar
  18. [18]
    A. Merkhouf and M. I. Boulos, Plasma Sources Sci. Technol. 7, 599 (1998).ADSCrossRefGoogle Scholar
  19. [19]
    A. Merkhouf and M. I. Boulos, J. Phys. D: Appl. Phys. 33, 1581 (2000).ADSCrossRefGoogle Scholar
  20. [20]
    J. H. Seo, J. M. Park and S. H. Hong, J. Korean Phys. Soc 54, 94 (2009).ADSCrossRefGoogle Scholar
  21. [21]
    G. Herdrich, M. Dropmann, T. Marynowski, S. Lohle and S. Fasoulas, in Proceedings of the 7th International Planetary Probe Workshop (Barcelona, Spain, June 2010).Google Scholar
  22. [22]
    R. K. Dewangan, S. B. Punjabi, N. K. Joshi, D. N. Barve, H. A. Mangalvedekar and B. K. Lande, J. Phys. Conf. Ser. 208, 012056 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Jun-Seok Nam
    • 1
  • Mi-Yeon Lee
    • 1
  • Jun-Ho Seo
    • 1
  • Gon-Ho Kim
    • 2
  1. 1.Department of Quantum System EngineeringChonbuk National UniversityJeonjuKorea
  2. 2.Department of Energy Systems EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations