Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 7, pp 748–754 | Cite as

Relevance of the Minimum Degree to Dynamic Fluctuation in Strongly Heterogeneous Networks

  • H.-H. Yoo
  • D.-S. Lee
Article
  • 25 Downloads

Abstract

The fluctuation of dynamic variables in complex networks is known to depend on the dimension and the heterogeneity of the substrate networks. Previous studies, however, have reported inconsistent results for the scaling behavior of fluctuation in strongly heterogeneous networks. To understand the origin of this conflict, we study the dynamic fluctuation on scale-free networks with a common small degree exponent but different mean degrees and minimum degrees constructed by using the configuration model and the static model. It turns out that the global fluctuation of dynamic variables diverges algebraically and logarithmically with the system size when the minimum degree is one and two, respectively. Such different global fluctuations are traced back to different, linear and sub-linear, growth of local fluctuation at individual nodes with their degrees, implying a crucial role of degree-one nodes in controlling correlation between distinct hubs.

Keywords

Fluctuation Scaling Complex networks Degree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    R. Albert and A-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008).CrossRefzbMATHGoogle Scholar
  4. [4]
    A-L. Barabási and H. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).CrossRefzbMATHGoogle Scholar
  5. [5]
    D. Ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge University Press, 2000).CrossRefzbMATHGoogle Scholar
  6. [6]
    S. Dorogovtsev, A. Goltsev and J. Mendes, Rev. Mod. Phys. 80, 1275 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    E. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009).CrossRefGoogle Scholar
  8. [8]
    G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai and P. A. Rikvold, Science 299, 677 (2003).ADSCrossRefGoogle Scholar
  9. [9]
    R. Albert, I. Albert and G. L. Nakarado, Phys. Rev. E 69, 025103 (2004).ADSCrossRefGoogle Scholar
  10. [10]
    M. Rohden, A. Sorge, M. Timme and D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    A. E. Motter, S. A. Myers, M. Anghel and T. Nishikawa, Nat. Phys. 9, 191 (2013).CrossRefGoogle Scholar
  12. [12]
    J. Gao, B. Barzel and A-L. Barabási, Nature 530, 307 (2016).ADSCrossRefGoogle Scholar
  13. [13]
    F. Family, J. Phys. A:Math. Theor. 19, L441 (1986).ADSCrossRefGoogle Scholar
  14. [14]
    A-L. Barabási and R. Albert, Science 286, 509 (1999).ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. L. Pastore y Piontti, P. A. Macri and L. A. Braunstein, Phys. Rev. E 76, 046117 (2007).ADSCrossRefGoogle Scholar
  16. [16]
    C. E. La Rocca, L. A. Braunstein and P. A. Macri, Phys. Rev. E 77, 046120 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    D. Torres, M. A. D. Muro, C. E. L. Rocca and L. A. Braunstein, EPL (Europhysics Letters) 110, 66001 (2015).ADSCrossRefGoogle Scholar
  18. [18]
    H-H. Yoo and D-S. Lee, Phys. Rev. E 93, 032319 (2016).ADSCrossRefGoogle Scholar
  19. [19]
    M. Molloy and B. Reed, Random Structures & Algorithms 6, 161 (1995).MathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Catanzaro, M. Bogu˜ná and R. Pastor-Satorras, Phys. Rev. E 71, 027103 (2005).ADSCrossRefGoogle Scholar
  21. [21]
    K-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).CrossRefGoogle Scholar
  22. [22]
    A. N. Samukhin, S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 77, 036115 (2008).ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    J. Park and M. E. J. Newman, Phys. Rev. E 68, 026112 (2003).ADSCrossRefGoogle Scholar
  24. [24]
    J-S. Lee, K-I. Goh, B. Kahng and D. Kim, Eur. Phys. J. B 49, 231 (2006).ADSCrossRefGoogle Scholar
  25. [25]
    D-S. Lee, K-I. Goh, B. Kahng and D. Kim, Nucl. Phys. B 696, 351 (2004).ADSCrossRefGoogle Scholar
  26. [26]
    S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. Lond. A 381, 17 (1982).ADSCrossRefGoogle Scholar
  27. [27]
    S. Hwang, D-S. Lee and B. Kahng, Phys. Rev. E 90, 043303 (2014).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsInha UniversityIncheonKorea

Personalised recommendations