Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 6, pp 709–715 | Cite as

Determination of Carrier Lifetimes in Organic-Inorganic Hybrid Solar Cells Based on Sb2S3 by Using the Time-Resolved Photocurrent

  • Hyun-Jun Jo
  • Young Hee Mun
  • Jong Su Kim
  • Seung Hyun Kim
  • Sang-Ju Lee
  • Shi-Joon Sung
  • Dae-Hwan Kim
Article
  • 38 Downloads

Abstract

This paper presents organic-inorganic hybrid solar cells (SCs) based on ZnO/Sb2S3/P3HT heterojunctions. The ZnO and the Sb2S3 layers were grown using atomic layer deposition (ALD). Although four cells were fabricated on one substrate by using the same process, their open-circuit voltages (V OC ) and short-circuit current densities (J SC ) were different. The SC with a high V OC has a low J SC . The causes of the changes in the V OC and the JSC were investigated by using photoluminescence (PL) spectroscopy and optically-biased time-resolved photocurrent (TRPC) measurements. The PL results at 300 K showed that the emission positions of the Sb2S3 layers in all cells were similar at approximately 1.71 eV. The carrier lifetime of the SCs was calculated from the TRPC results. The lifetime of cell 4 with the highest J SC decreased drastically with increasing intensity of the continuous-wave optical bias beam. Therefore, the defect states in the ZnO layer contribute to the J SC , but degrade the V OC .

Keywords

Sb2S3 ZnO Solar cell Photocurrent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Adv. Mater. 16, 1009 (2004).CrossRefGoogle Scholar
  2. [2]
    W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science 295, 2425 (2002).ADSCrossRefGoogle Scholar
  3. [3]
    C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang and S. K. Jha, Phys. Status Solidi B 249, 627 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes and M. Gratzel, J. Phys. Chem. Lett. 1, 1524 (2010).CrossRefGoogle Scholar
  5. [5]
    J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin and M. Gratzel, Nano Lett. 10, 2609 (2010).ADSCrossRefGoogle Scholar
  6. [6]
    M. Y. Versavel and J. A. Haber, Thin Solid Films 515, 7171 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    A. N. Kulkarni, M. B. Rajendra Prasad, R. V. Ingle, H. M. Pathan, G. E. Eldesoky, M. Naushad and R. S. Patil, Opt. Mater. 46, 536 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    S. Messina, M. Nair and P. Nair, Thin Solid Films 515, 5777 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    N. Maiti, S. H. Im, C-S. Lim and S. I. Seok, Dalton Trans. 41, 11569 (2012).CrossRefGoogle Scholar
  10. [10]
    Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim and S. I. Seok, Adv. Funct. Mater. 24, 3587 (2014).CrossRefGoogle Scholar
  11. [11]
    D-H. Kim, S-J. Lee, M. S. Park, J-K. Kang, J. H. Heo, S. H. Im and S-J. Sung, Nanoscale 6, 14549 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    H. Maghraoui-Meherzi, T. B. Nasr, N. Kamoun and M. Dachraoui, Physica B 405, 3101 (2010).ADSCrossRefGoogle Scholar
  13. [13]
    D. Bi, L. Yang, G. Boschloo, H. A. Hagheldt and E. M. J. Johansson, J. Phys. Chem. Lett. 4, 1532 (2013).CrossRefGoogle Scholar
  14. [14]
    C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J-P. Wolf and V. Sundström, J. Am. Chem. Soc. 136, 5189 (2014).CrossRefGoogle Scholar
  15. [15]
    I. Oja, A. Belaidi, L. Dloczik, M-C. Lux-Steiner and T. Dittrich, Semicond. Sci. Technol. 21, 520 (2006).ADSCrossRefGoogle Scholar
  16. [16]
    G. Larramona, C. Chone, A. Jacob, D. Sakakura, B. Delatouche, D. Pere, X. Cieren, M. Nagino and R. Bayon, Chem. Mater. 18, 1688 (2006).CrossRefGoogle Scholar
  17. [17]
    O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen and G. Hodes, J. Photochem. Photobiol. A 181, 306 (2006).CrossRefGoogle Scholar
  18. [18]
    W. J. E. Beek, L. H. Slooff, M. M. Wienk, J. M. Kroon and R. A. J. Janssen, Adv. Funct. Mater. 15, 1703 (2005).CrossRefGoogle Scholar
  19. [19]
    Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Mork¸c, J. Appl. Phys. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  20. [20]
    D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt and J. W. P. Hsu, J. Phys. Chem. C 111, 16640 (2007).CrossRefGoogle Scholar
  21. [21]
    A. J. Said, G. Poize, C. Martini, D. Ferry, W. Marine, S. Giorgio, F. Fages, J. Hocq, J. Boucle, J. Nelson, J. R. Durrant and J. Ackermann, J. Phys. Chem. C 114, 11273 (2010).CrossRefGoogle Scholar
  22. [22]
    D. Duché, F. Bencheikh, S. B. Dkhil, M. Gaceur, N. Berton, O. Margeat, J. Ackermann, J. J. Simon and L. Escoubas, Sol. Energy Mater. Sol. Cells 126, 197 (2014).CrossRefGoogle Scholar
  23. [23]
    X. Ju, W. Feng, K. Varutt, T. Hori, A. Fujii and M. Ozaki, Nanotechnology 19, 435706 (2008).ADSCrossRefGoogle Scholar
  24. [24]
    W. K. Metzger, D. Albin, D. Levi, P. Sheldon, X. Li, B. M. Keyes and R. K. Ahrenkiel, J. Appl. Phys. 94, 3549 (2003).ADSCrossRefGoogle Scholar
  25. [25]
    S. Wood, D. O’Connor, C. W. Jones, J. D. Claverley, J. C. Blakesley, C. Giusca and F. A. Castro, Sol. Energy Mater. Sol. Cells 161, 89 (2017).CrossRefGoogle Scholar
  26. [26]
    X. Niu, H. Zhu, X. Liang, Y. Guo, Z. Li and Y. Mai, Appl. Surf. Sci. 426, 1213 (2017).ADSCrossRefGoogle Scholar
  27. [27]
    H-J. Jo, S. H. Kim, J. S. Kim, S-J. Lee and D-H. Kim, J. Korean Phys. Soc. 69, 541 (2016).ADSCrossRefGoogle Scholar
  28. [28]
    M. Taguchi, A. Terakawa, E. Maruyama and M. Tanaka, Prog. Photovolt: Res. Appl. 13, 481 (2005).CrossRefGoogle Scholar
  29. [29]
    H. C. Chou and A. Rohatgi, J. Electron. Mater. 23, 31 (1994).ADSCrossRefGoogle Scholar
  30. [30]
    E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak and A. Jablonski, Semicond. Sci. Technol. 27, 074011 (2012).ADSCrossRefGoogle Scholar
  31. [31]
    A. Efstathiou and E. R. Levin, J. Opt. Soc. Am. 58, 373 (1968).ADSCrossRefGoogle Scholar
  32. [32]
    V. Ioannou-Sougleridis, B. Kamenev, D. N. Kouvatsos and A. G. Nassiopoulou, Mater. Sci. Eng. B 101, 324 (2003).CrossRefGoogle Scholar
  33. [33]
    R. K. Ahrenkiel, R. Ellingson, S. Johnston and M. Wanlass, Appl. Phys. Lett. 72, 3470 (1998).ADSCrossRefGoogle Scholar
  34. [34]
    S. J. Fancey, G. S. Buller, J. S. Massa, A. C. Walker, C. J. McLean, A. McKee, A. C. Bryce, J. H. Marsh and R. M. De La Rue, J. Appl. Phys. 79, 9390 (1996).ADSCrossRefGoogle Scholar
  35. [35]
    A. M. Fox, R. J. Manning and A. Miller, J. Appl. Phys. 65, 4287 (1989).ADSCrossRefGoogle Scholar
  36. [36]
    A. Balcioglu, R. K. Ahrenkiel and F. Hasoon, J. Appl. Phys. 88, 7175 (2000).ADSCrossRefGoogle Scholar
  37. [37]
    Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu and J. H. Yang, Appl. Phys. Lett. 87, 211912 (2005).ADSCrossRefGoogle Scholar
  38. [38]
    C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Hyun-Jun Jo
    • 1
  • Young Hee Mun
    • 1
  • Jong Su Kim
    • 1
  • Seung Hyun Kim
    • 2
  • Sang-Ju Lee
    • 2
  • Shi-Joon Sung
    • 2
  • Dae-Hwan Kim
    • 2
  1. 1.Department of PhysicsYeungnam UniversityGyeongsanKorea
  2. 2.Daegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguKorea

Personalised recommendations