Journal of the Korean Physical Society

, Volume 72, Issue 6, pp 703–708 | Cite as

Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning

  • Mi-Ra Shin
  • Jong-Tae Son


NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg −1 at a 0.05 C rate within the 2.0 ~ 4.5 V voltage range and a low Rct of 110 Ω.


Sodium-ion batteries Electrospinning 0D/1D nano-complex NaFe0.9Mn0.1PO4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Li, J. Guo, Z. Ye, X. Zhao and S. Wu, J. Am. chem. soc. 8, 17233 (2016).Google Scholar
  2. [2]
    K. T. Lee, T. N. Ramesh, F. Nan and L. F. Nazar, J. Chem. Mater. 23, 3593 (2011).CrossRefGoogle Scholar
  3. [3]
    N. V. Kosova and V. R. Podugolnikov J. Materials research bulletin 60, 849 (2014).CrossRefGoogle Scholar
  4. [4]
    Y. Fang, Q. Liu, L. Xiao and Y. Cao, J. ACS Appl. Mater. Interfaces 7, 17977 (2015).CrossRefGoogle Scholar
  5. [5]
    C. Kang, C. Kim, J. Kim, J. Lim and J. Son, J. Physics and Chemistry of Solids 74, 536 (2013).ADSCrossRefGoogle Scholar
  6. [6]
    N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, J. Chem Rev, 114, 11636 (2014).CrossRefGoogle Scholar
  7. [7]
    Zhu, Y. Xu, Y. Liu, Y. Luo and C. Wang, C. J. Nanoscale 5, 780 (2013).ADSCrossRefGoogle Scholar
  8. [8]
    A. J. Fernandez-Ropero, D. Saurel, B. Acebedo and T. Rojo, J. Power Sources 291, 40 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    S. Kalluri, K. H. Seng, Z. Guo and Z. Chen, J. ACS Appl. Mater. Interfaces 6, 8953 (2014).CrossRefGoogle Scholar
  10. [10]
    H. Huang, S. Yin and L. F. Nazar, J. Electrochem. Solid- State Lett. 4, 170 (2001).CrossRefGoogle Scholar
  11. [11]
    Z. Chen and J. R. Dahn, J. Electrochem. Soc. 149, 1184 (2002).CrossRefGoogle Scholar
  12. [12]
    S. Y. Chung, J. T. Bloking and Y. M. Chiang, J. Nat. Mater. 2, 123 (2002).ADSCrossRefGoogle Scholar
  13. [13]
    C. Delacourt, P. Poizot and S. Levasseur, J. Electrochem. Solid-State Lett. 9, 352 (2006).CrossRefGoogle Scholar
  14. [14]
    C. Kim, S. H. Kang, H. J. Jeon and J. T. Son, J. Electrochem. 28, 204 (2013).Google Scholar
  15. [15]
    M. M. Hohman, M. Shin, E. Rutledge and M. P. Brenner, J. Phys. Fluids. 13, 2201 (2001).ADSCrossRefGoogle Scholar
  16. [16]
    Z. W. Fu, J. Ma and Q. Z. Qin, J. Solid State Ionics 176, 1635 (2005).CrossRefGoogle Scholar
  17. [17]
    R. Khajavi and M. Abbasipour, J. Scientia Iranica 19, 2029 (2012).CrossRefGoogle Scholar
  18. [18]
    C-S. Kang, C. Kim and J-T. Son, J. Ceramic Processing Resear 13, 304 (2012).Google Scholar
  19. [19]
    W. Li, L. Zeng, Y. Wu and Y. Yu, J. Sci. China Mater 59 287, (2016).CrossRefGoogle Scholar
  20. [20]
    H. Yi, C. Hu, H. Fang, Y. Yao, W. Ma and Y. Dai, J. Electrochem. Acta. 56, 4052 (2011).CrossRefGoogle Scholar
  21. [21]
    Y. C. Chen, J. M. Chen, C. H. Hsu and J. W. Yeh, J. Solid State Ionics. 180, 1215 (2009).CrossRefGoogle Scholar
  22. [22]
    C. H. Shen, L. Huang, F. Fu and X. M. Zheng, J. Mater. Interfaces 6, 13271 (2014).CrossRefGoogle Scholar
  23. [23]
    E. Hosono, Y. Wang, M. Enomoto and M. Okubo, J. ACS Appl. Mater. Interfaces 2, 212 (2010).CrossRefGoogle Scholar
  24. [24]
    S-B. Yang and J-T. Son, J. Korean Phys. Soc. 69, 443 (2016).ADSCrossRefGoogle Scholar
  25. [25]
    Y. Xu, J. Yu, S. Peng, S. Liu and Z. Wei, J. Braz. Chem. Soc. 23, 1298 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Nano Polymer Science and EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations