Journal of the Korean Physical Society

, Volume 72, Issue 6, pp 676–680 | Cite as

A New Energy Ordering and the Dipole Moment of Gas Phase Glycine via Plane-Wave Density Functional Theory Calculations

  • Byeong June Min


The abundance of glycine (Gly), the simplest amino acid, in meteorites leads us to the next question about its extraterrestrial origin. However, astronomers have not yet found glycine signature in interstellar medium. Laboratory microwave spectroscopy experiments report the most stable Gly conformer has a dipole moment of 4.5 - 5.45 Debye. Theoretical calculations, so far performed only with Gaussian basis functions, has predicted a dipole moment of about 1 Debye. This discrepancy has baffled astronomers. We study the energetics of glycine and its isomers and conformers via plane-wave density functional theory calculations. The geometric structures of the isomers and their conformers are identified, along with their relative stability and their dipole moment. In the case of glycine, we obtain the most stable conformer with a dipole moment of 5.76 Debye, close to the microwave spectroscopy experiments. If the plane wave energy cutoff is reduced to a lower value (~ 400 eV) on purpose, the energy ordering reverses to the case with Gaussian basis calculations.


Glycine Glycine isomers Glycine conformers Glycine dipole moment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    See, for example, a review by A. S. Burton, J. C. Stern, J. E. Elsila, D. P. Glavin and J. P. Dworkin, Chem. Soc. Rev. 41, 5459 (2012).Google Scholar
  2. [2]
    J. M. Hollis, J. A. Pedelty, L. E. Snyder, P. R. Jewell, F. J. Lovas, P. Palmer and S-Y. Liu, Astrophys. J. 588, 353 (2003).ADSCrossRefGoogle Scholar
  3. [3]
    M. Lattelais, F. Pauzat, J. Pilme, Y. Ellinger and C. Ceccarelli, Astron. Astrophys. 532, A39 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    D. M. Mehringer, L. E. Snyder, Y. Miao and F. J. Lovas, Astrophys. J. 480, L71 (1997).ADSCrossRefGoogle Scholar
  5. [5]
    A. J. Remijan, L. E. Snyder, S-Y. Liu, D. M. Mehringer and Y-J. Kuan, Astrophys. J. 576, 264 (2002).ADSCrossRefGoogle Scholar
  6. [6]
    H. Kayi, R. I. Kaiser and J. D. Head, Phys. Chem. Chem. Phys. 13, 15774 (2011).CrossRefGoogle Scholar
  7. [7]
    J. H. Jensen and M. S. Gordon, J. Am. Chem. Soc. 113, 7917 (1991).CrossRefGoogle Scholar
  8. [8]
    A. G. Csaszar, J. Am. Chem. Soc. 114, 9568 (1992).CrossRefGoogle Scholar
  9. [9]
    C. H. Hu, M. Shen and H. F. Schaffer III, J. Am. Chem. Soc. 115, 2923 (1993).CrossRefGoogle Scholar
  10. [10]
    M. Lattelais, Y. Ellinger and B. Zanda, Int. J. Astrobiol. 6, 37 (2007).CrossRefGoogle Scholar
  11. [11]
    H. L. Sellers and L. Schäfer, J. Am. Chem. Soc. 100, 7728 (1978).CrossRefGoogle Scholar
  12. [12]
    R. D. Brown, P. D. Godfrey, J. W. V. Storey and M-P. Bassez, J. Chem. Soc. Chem. Commun. 13, 547 (1978).CrossRefGoogle Scholar
  13. [13]
    F. J. Lovas, Y. Kawashima, J-U. Grabow, R. D. Suenram, G. T. Fraser and E. Hirota, Astrophys. J. 455, L201 (1995).ADSCrossRefGoogle Scholar
  14. [14]
    X. Gonze et al., Computer Phys. Commun. 180, 2582 (2009). The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated and other contributors (URL, accessed January 2014).ADSCrossRefGoogle Scholar
  15. [15]
    D. R. Hamann, Phys. Rev. B 88, 085117 (2013).ADSCrossRefGoogle Scholar
  16. [16]
    J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  17. [17]
    S. Grimme, J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  18. [18]
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes (Cambridge University Press, New York, 1986).zbMATHGoogle Scholar
  19. [19]
    B. J. Min, [arXiv: 1708.03834] [physics.chem-ph].Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsDaegu UniversityKyungsanKorea

Personalised recommendations