Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak
- 8 Downloads
Abstract
A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 (m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.
Keywords
Fishbone oscillation Energetic ions EASTPreview
Unable to display preview. Download preview PDF.
References
- [1]L. Chen, R. B. White and M. N. Rosenbluth, Phys. Rev. Lett 52, 1122 (1984).ADSCrossRefGoogle Scholar
- [2]B. Coppi and F. Porcelli, Phys. Rev. Lett 57, 2272 (1986).ADSCrossRefGoogle Scholar
- [3]W. W. Heidbrink and G. Sager, Nucl. Fusion 30, 1015 (1990).CrossRefGoogle Scholar
- [4]F. Nabais, B. Borba, M. Mantsinen, M. F. F. Nave and S. E. Sharapov, Phys. Plasmas 12, 102509 (2005).ADSCrossRefGoogle Scholar
- [5]L. Q. Xu, J. Zhang, K. Chen, L. Hu, E. Li, S. Lin, T. Shi, Y. Duan and Y. Zhu, Phys. Plasmas 22, 122510 (2015).ADSCrossRefGoogle Scholar
- [6]Y. Yang, X. Gao, H. Liu, G. Li, T. Zhang, L. Zeng and EAST team, Plasma Phys. Control. Fusion 59, 085003 (2017).ADSCrossRefGoogle Scholar
- [7]B. Wu, B. Hao, R. White, J. Wang, Q. Zang, X. Han and C. Hu, Plasma Phys. Control. Fusion 59, 025004 (2017).ADSCrossRefGoogle Scholar
- [8]K. Chen, L. Q. Xu, L. Hu, Y. Duan, X. Li, Y. Yuan, S. Mao, X. Sheng and J. Zhao, Rev. Sci. Instrum. 87, 063504 (2016).ADSCrossRefGoogle Scholar
- [9]H. Liu, Y. Jie, W. Ding, D. Brower, Z. Zou, W. Li, Z. Wang, J. Qian, Y. Yang, L. Zeng, T. Lan, X. Wei, L. Hu and B. Wan, Rev. Sci. Instrum. 85, 11D405 (2016).CrossRefGoogle Scholar
- [10]Y. Li, J. Fu, B. Lyu, X. Du, C. Li, Y. Zhang, X. Yin, Y. Yu, Q. Wang, M. Hellermann, Y. Shi, Y. Ye and B. Wan, Rev. Sci. Instrum. 85, 11E428 (2104).Google Scholar
- [11]G. Zhong, H. Cao, L. Hu, R. Zhou, M. Xiao, K. Li, N. Pu, J. Huang, G. Liu, S. Lin, B. Lyu, H. Liu and X. Zhang, Plasma Phys. Control. Fusion 58, 075013 (2016).ADSCrossRefGoogle Scholar
- [12]D. Vezinet, V. Igochine, M. Weiland, Q. Yu, A. Gude, D. Meshcheriakov and M. Sertoli, Nucl. Fusion 56, 086001 (2016).ADSCrossRefGoogle Scholar
- [13]L. Q. Xu, L. Hu, K. Chen, E. Li, F. Wang, M. Xu, Y. Duan, T. Shi, J. Zhang, R. Zhou and Y. Chen, Phys. Plasmas 19, 122504 (2012).ADSCrossRefGoogle Scholar
- [14]F. Wang, G. Fu and W. Shen, Nucl. Fusion 57, 016034 (2017).ADSCrossRefGoogle Scholar
- [15]J. Zhang, Y. Zhu, J. Zhao, B. Wan, J. Li and W. Heidbrink, Rev. Sci. Instrum. 87, 11D834 (2016).CrossRefGoogle Scholar