Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 6, pp 662–668 | Cite as

Characteristic Features of Double Layers in Rotating, Magnetized Plasma Contaminated with Dust Grains with Varying Charges

  • Jaydeep Paul
  • Apratim Nag
  • Karabi Devi
  • Himadri Sekhar Das
Article

Abstract

The evolution and the characteristic features of double layers in a plasma under slow rotation and contaminated with dust grains with varying charges under the effect of an external magnetic field are studied. The Coriolis force resulting from the slow rotation is responsible for the generation of an equivalent magnetic field. A comparatively new pseudopotential approach has been used to derive the small amplitude double layers. The effect of the relative electron-ion concentration, as well as the temperature ratio, on the formation of the double layers has also been investigated. The study reveals that compressive, as well as rarefactive, double layers can be made to co-exist in plasma by controlling the dust charge fluctuation effect supplemented by variations of the plasma constituents. The effectiveness of slow rotation in causing double layers to exist has also emanated from the study. The results obtained could be of interest because of their possible applications in both laboratories and space.

Keywords

Nonlinear waves Dusty plasma Pseudopotential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. L. Merlino and J. Goree, Phys. Today. 57, 32 (2004).CrossRefGoogle Scholar
  2. [2]
    V. E. Fortov, A. V. Ivlev, S. K. Khrapak, A. G. Khrapak and G. E. Morfill, Phys. Rep. 421, 1 (2005).ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Ishihara, J. Phys. D 40, R121 (2007).ADSCrossRefGoogle Scholar
  4. [4]
    D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).ADSCrossRefGoogle Scholar
  5. [5]
    P. K. Shukla and B. Eliasson. Rev. Mod. Phys. 81, 25 (2009).ADSCrossRefGoogle Scholar
  6. [6]
    N. N. Rao, P. K. Shukla and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).ADSCrossRefGoogle Scholar
  7. [7]
    P. K. Shukla, Phys. Plasmas 8, 1791 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).ADSCrossRefGoogle Scholar
  9. [9]
    A. Barkan, N. D Angelo and R. L. Merlino, Planet. Space Sci. 44, 239 (1996).ADSCrossRefGoogle Scholar
  10. [10]
    R. L. Merlino and J. Goree, Phys. Today 57, 32 (2004).CrossRefGoogle Scholar
  11. [11]
    M. G. M. Anoear and A. A. Mamun, J. Plasma Phys. 75, 475 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    S. K. El - Labany, M. Shalaby, E. F. El - Shamy and M. A. Khaled, J. Plasma Phys. 77, 95 (2011).ADSCrossRefGoogle Scholar
  13. [13]
    H. Alinejad, Astrophys. Space Sci. 337, 223 (2012).ADSCrossRefGoogle Scholar
  14. [14]
    N. R. Kundu and A. A. Mamun, J. Plasma Phys. 78, 677 (2012).ADSCrossRefGoogle Scholar
  15. [15]
    H. Alfven and P. Carlqvist, Sol. Phys. 1, 220 (1967).ADSCrossRefGoogle Scholar
  16. [16]
    M. Temerin, K. Cerny, W. Lotko and F. S. Mozer, Phys. Rev. Lett. 48, 1175 (1982).ADSCrossRefGoogle Scholar
  17. [17]
    J. E. Borovsky, J. Geophys. Res. 89, 2251 (1984).ADSCrossRefGoogle Scholar
  18. [18]
    P. Carlqvist, IEEE Trans. Plasma Sci. PS-14, 794 (1986).ADSCrossRefGoogle Scholar
  19. [19]
    D. E. Baldwin and B. G. Logan, Phys. Rev. Lett. 43, 1318 (1979).ADSCrossRefGoogle Scholar
  20. [20]
    K. Saeki, S. Iizuka and N. Sato, Phys. Rev. Lett. 45, 1853 (1980).ADSCrossRefGoogle Scholar
  21. [21]
    S. L. Jain, R. S. Tiwari and S. R. Sharma, Can. J. Phys. 68, 474 (1990).ADSCrossRefGoogle Scholar
  22. [22]
    L. L. Yadav and S. R. Sharma, Phys. Scr. 43, 106 (1991).ADSCrossRefGoogle Scholar
  23. [23]
    R. L. Merlino and J. J. Loomis, Phys. Fluids B2, 2865 (1990).ADSCrossRefGoogle Scholar
  24. [24]
    G. Hairapetian and R. L. Stenzel, Phys. Rev. Lett. 65, 175 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    G. Hairapetian and R. L. Stenzel, Phys. Fluids B 3, 899 (1991).ADSCrossRefGoogle Scholar
  26. [26]
    R. L. Merlino and J. J. Loomis, Phys. Fluids B 2, 2865 (1990).ADSCrossRefGoogle Scholar
  27. [27]
    R. Bostrom, G. Gustafsson, B. Holback, G. Holmgren, H. Koskinen and P. Kintner, Phys. Rev. Lett. 61, 82 (1988).ADSCrossRefGoogle Scholar
  28. [28]
    S. L. Jain, R. S. Tiwari and S. R. Sharma, Can. J. Phys. 68, 474 (1990).ADSCrossRefGoogle Scholar
  29. [29]
    L. L. Yadav and S. R. Sharma, Phys. Scr. 43, 106 (1991).ADSCrossRefGoogle Scholar
  30. [30]
    G. C. Das and A. Nag, Phys. Plasmas 13, 082303 (2006).ADSCrossRefGoogle Scholar
  31. [31]
    G. C. Das and A. Nag, Phys. Plasmas 14, 083705 (2007).ADSCrossRefGoogle Scholar
  32. [32]
    I. J. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, New York, 1987).Google Scholar
  33. [33]
    J. X. Ma and J. Liu, Phys. Plasmas 4, 253 (1997).ADSCrossRefGoogle Scholar
  34. [34]
    G. C. Das, J. Sarma and R. Roychoudhury, Phys. Plasmas 7, 74 (2001).ADSCrossRefGoogle Scholar
  35. [35]
    G. C. Das and K. Devi, Astrophys. Space Sci. 330, 79 (2010).ADSCrossRefGoogle Scholar
  36. [36]
    O. Ishihara and N. Sato, IEEE Plasma. Sci. 29, 179 (2001).ADSCrossRefGoogle Scholar
  37. [37]
    D. J. Wu, D. Y. Huang and C. G. Fälthammar, Phys. Plasmas 3, 2879 (1996).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Jaydeep Paul
    • 1
  • Apratim Nag
    • 2
  • Karabi Devi
    • 3
  • Himadri Sekhar Das
    • 4
  1. 1.Department of ChemistryGurucharan CollegeSilcharIndia
  2. 2.Department of PhysicsGurucharan CollegeSilcharIndia
  3. 3.Department of MathematicsGolaghat Commerce CollegeGolaghatIndia
  4. 4.Department of PhysicsAssam UniversitySilcharIndia

Personalised recommendations