Journal of the Korean Physical Society

, Volume 72, Issue 6, pp 653–657 | Cite as

Susceptibility of the Ising Model on a Kagomé Lattice by Using Wang-Landau Sampling

Article
  • 13 Downloads

Abstract

The susceptibility of the Ising model on a kagomé lattice has never been obtained. We investigate the properties of the kagomé-lattice Ising model by using the Wang-Landau sampling method. We estimate both the magnetic scaling exponent yh = 1.90(1) and the thermal scaling exponent yt = 1.04(2) only from the susceptibility. From the estimated values of yh and yt, we obtain all the critical exponents, the specific-heat critical exponent α = 0.08(4), the spontaneous-magnetization critical exponent β = 0.10(1), the susceptibility critical exponent γ = 1.73(5), the isothermalmagnetization critical exponent δ = 16(4), the correlation-length critical exponent ν = 0.96(2), and the correlation-function critical exponent η = 0.20(4), without using any other thermodynamic function, such as the specific heat, magnetization, correlation length, and correlation function. One should note that the evaluation of all the critical exponents only from information on the susceptibility is an innovative approach.

Keywords

Susceptibility Kagomé lattice Wang-Landau sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Syozi, Prog. Theo. Phys. 6, 306 (1951).ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Mekata, Physics Today 56, 12 (2003). and references therein.CrossRefGoogle Scholar
  3. [3]
    V. Elser, Phys. Rev. Lett. 62, 2405 (1989).ADSCrossRefGoogle Scholar
  4. [4]
    J. L. Atwood, Nature Mater. 1, 91 (2002). and references therein.ADSCrossRefGoogle Scholar
  5. [5]
    Q. Chen, S. C. Bae and S. Granick, Nature 469, 306 (2011).CrossRefGoogle Scholar
  6. [6]
    K. S. Khalil, A. Sagastegui, Y. Li, M. A. Tahir, J. E. S. Socolar, B. J. Wiley and B. B. Yellen, Nature Commun. 3, 794 (2012).ADSCrossRefGoogle Scholar
  7. [7]
    Y. Zong et al., Optics Express 24, 8877 (2016). and references therein.ADSCrossRefGoogle Scholar
  8. [8]
    I. Syozi, Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic Press, New York, 1972), Vol. 1, p. 269.Google Scholar
  9. [9]
    K. Kano and S. Naya, Prog. Theor. Phys. 10, 158 (1953).ADSCrossRefGoogle Scholar
  10. [10]
    S. Naya, Prog. Theor. Phys. 11, 53 (1954).ADSCrossRefGoogle Scholar
  11. [11]
    A. J. Guttmann, J. Phys. A 10, 1911 (1977).ADSCrossRefGoogle Scholar
  12. [12]
    H. Giacomini, J. Phys. A 21, L31 (1988).ADSCrossRefGoogle Scholar
  13. [13]
    K. Y. Lin, J. Phys. A 22, 3435 (1989).ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    L. Onsager, Phys. Rev. 65, 117 (1944).ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C. Domb, The Critical Point (Taylor and Francis, London, 1996), and references therein.Google Scholar
  16. [16]
    J. Cardy, Finite-Size Scaling (North-Holland, Amsterdam, 1988), Vol. 1.Google Scholar
  17. [17]
    G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).ADSCrossRefGoogle Scholar
  18. [18]
    E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).ADSCrossRefGoogle Scholar
  19. [19]
    W. Kwak and U. H. E. Hansman, Phys. Rev. Lett. 95, 138102 (2005).ADSCrossRefGoogle Scholar
  20. [20]
    B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).ADSCrossRefGoogle Scholar
  21. [21]
    B. A. Berg, Int. J. Mod. Phys. C 4, 249 (1993).ADSCrossRefGoogle Scholar
  22. [22]
    F. Eisenmenger, U. H. E. Hansmann, Sh. Hayryan and C. K. Hu, Comp. Phys. Comm. 138, 192 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    F. Eisenmenger, U. H. E. Hansmann, S. Hayryan and C-K. Hu, Comp. Phys. Comm. 174, 422 (2006).ADSCrossRefGoogle Scholar
  24. [24]
    David P. Landau, Monte-Carlo Simulations in Statistical Physics, 3rd ed. (Cambridge, New York, 2009)CrossRefMATHGoogle Scholar
  25. [25]
    F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).ADSCrossRefGoogle Scholar
  26. [26]
    D. P. Landau, S-H. Tsai and M. Exler, Am. J. Phys. 72, 1294 (2004).ADSCrossRefGoogle Scholar
  27. [27]
    B. J. Schulz, K. Binder, M. Müller and D. P. Landau, Phys. Rev. E 67, 067102 (2003).ADSCrossRefGoogle Scholar
  28. [28]
    M. Scott Shell, P. G. Debenedetti and A. Z. Panagiotopoulos, Phys. Rev. E 66, 056703 (2002).ADSCrossRefGoogle Scholar
  29. [29]
    C. Zhou, T. C. Schulthess, S. Torbrügge and D. P. Landau, Phys. Rev. Lett. 96, 120201 (2006).ADSCrossRefGoogle Scholar
  30. [30]
    C. Yamaguchi and Y. Okabe, J. Phys. A: Math. Gen. 34, 8781 (2001).ADSCrossRefGoogle Scholar
  31. [31]
    F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).ADSCrossRefGoogle Scholar
  32. [32]
    T. S. Jain and J. J. de Pablo, J. Chem. Phys. 118, 4226 (2003).ADSCrossRefGoogle Scholar
  33. [33]
    Q. L. Yan, R. Faller and J. J. de Pablo, J. Chem. Phys. 116, 8745 (2002).ADSCrossRefGoogle Scholar
  34. [34]
    N. Rathore, T. A. Knotts and J. J. de Pablo, J. Chem. Phys 118, 4285 (2003).ADSCrossRefGoogle Scholar
  35. [35]
    J-S. Yang and W. Kwak, Comput. Phys. Comm. 179, 179 (2008).Google Scholar
  36. [36]
    F. Calvo, Mol. Phys. 100, 3421 (2002).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.School of Liberal Arts and SciencesKorea National University of TransportationChungjuKorea
  2. 2.Department of PhysicsChosun UniversityGwangjuKorea

Personalised recommendations