Partition Function Zeros and Shift Exponent of the Ising Model on a Square Lattice with Self-dual Boundary Conditions
Article
First Online:
Received:
- 28 Downloads
Abstract
The exact integer values for the density of states of the Ising model on an L×L square lattice with self-dual boundary conditions are evaluated up to L = 22 for the first time by counting all possible spin states (enormous 2485 ≈ 10146 states for L = 22). The exact partition function zeros in the complex temperature plane, very sensitive indicators for phase transitions and critical phenomena, are obtained by using the density of states. From the behavior of the partition function zeros, the shift exponent λ of the square-lattice Ising model with self-dual boundary conditions is accurately and precisely estimated to be λ = 2.0000000(2), clearly indicating λ = 2.
Keywords
Self-dual boundary conditions Partition function zeros Shift exponentPreview
Unable to display preview. Download preview PDF.
References
- [1]C. Domb, The Critical Point (Taylor and Francis, London, 1996).Google Scholar
- [2]J. L. Cardy, Finite-Size Scaling (North Holland, Amsterdam, 1988).Google Scholar
- [3]M. N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic Press, New York, 1983), Vol. 8, p. 145.Google Scholar
- [4]A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).ADSCrossRefGoogle Scholar
- [5]C. Hoelbling and C. B. Lang, Phys. Rev. B 54, 3434 (1996).ADSCrossRefGoogle Scholar
- [6]W. Janke and R. Kenna, Phys. Rev. B 65, 064110 (2002).ADSCrossRefGoogle Scholar
- [7]S-Y. Kim, J. Korean Phys. Soc. 65, 2009 (2014).ADSCrossRefGoogle Scholar
- [8]A. Poghosyan, R. Kenna and N. Izmailian, Europhys. Lett. 111, 60010 (2015).ADSCrossRefGoogle Scholar
- [9]R. J. Creswick, Phys. Rev. E 52, R5735 (5735).Google Scholar
- [10]S-Y. Kim and R. J. Creswick, Phys. Rev. Lett. 81, 2000 (1998).ADSMathSciNetCrossRefGoogle Scholar
- [11]S-Y. Kim, Nucl. Phys. B 637, 409 (2002).ADSCrossRefGoogle Scholar
- [12]S-Y. Kim, Phys. Rev. Lett. 93, 130604 (2004).ADSMathSciNetCrossRefGoogle Scholar
- [13]S-Y. Kim, J. Korean Phys. Soc. 67, 1517 (2015).ADSCrossRefGoogle Scholar
- [14]C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).ADSCrossRefGoogle Scholar
- [14a]T. D. Lee and C. N. Yang, ibid. 410 (1952).Google Scholar
- [15]M. E. Fisher, in Lectures in Theoretical Physics, edited by W. E. Brittin (University of Colorado Press, Boulder, CO, 1965), Vol. 7c, p. 1.Google Scholar
- [16]C. Itzykson, R. B. Pearson and J-B. Zuber, Nucl. Phys. B 220, 415 (1983).ADSCrossRefGoogle Scholar
- [17]W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd edition (Cambridge University Press, Cambridge, 1992), p. 104.MATHGoogle Scholar
- [18]W. T. Lu and F. Y. Wu, Physica A 258, 157 (1998).ADSMathSciNetCrossRefGoogle Scholar
- [19]I. Bena, M. Droz and A. Lipowski, Int. J. Mod. Phys. B 19, 4269 (2005). and references therein.ADSCrossRefGoogle Scholar
- [20]S-Y. Kim, C-O. Hwang and J. M. Kim, Nucl. Phys. B 805, 441 (2008).ADSCrossRefGoogle Scholar
- [21]J. H. Lee, S-Y. Kim and J. Lee, J. Chem. Phys. 133, 114106 (2010).ADSCrossRefGoogle Scholar
- [22]J. H. Lee, S-Y. Kim and J. Lee, Phys. Rev. E 86, 011802 (2012).ADSCrossRefGoogle Scholar
- [23]J. Lee, Phys. Rev. Lett. 110, 248101 (2013).ADSCrossRefGoogle Scholar
- [24]S-Y. Kim and W. Kwak, J. Korean Phys. Soc. 65, 436 (2014).ADSCrossRefGoogle Scholar
- [25]J. H. Lee, S-Y. Kim and J. Lee, AIP Advances 5, 127211 (2015).ADSCrossRefGoogle Scholar
Copyright information
© The Korean Physical Society 2018