Skip to main content
Log in

Effects of Varying Matching Between Collimator Hole and Scintillator Pixel on Gamma Camera Image Resolution

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A collimator is a key component of gamma cameras, which affects imaging performance significantly. Recently, pixelated scintillator arrays are widely applied in the development of highresolution gamma cameras, instead of monolithic scintillator blocks. Therefore, combining the collimator and the pixelated scintillator has been a crucial factor in achieving good imaging performance. In this study, we investigated the effects of the shape and position of a collimator hole on the image resolution of a gamma camera with a pixelated scintillator. We designed a pixel-matched collimator and a low-energy high-resolution (LEHR) collimator with hexagonal shaped holes that have the same collimator geometrical efficiency. Simulation experiments were performed with a Monte Carlo simulation package (GATE v7.0). For both types of collimator, camera sensitivity was measured for validating the collimator efficiency, and planar images were obtained to measure spatial resolution, with changing the line profile angle based on the septa direction. Camera sensitivities for both collimators were equivalent (difference = 1.76 ± 0.51%). In contrast to the case of the pixel-matched collimator, in the case of the LEHR collimator, as the angle of the line profile varied, the spatial resolution showed a difference at each profile angle. In the case when two collimator holes symmetrically matched with one scintillator pixel, the spatial resolution showed a 64.87% difference in its maximum and a position distortion of 26.06% from the original source position, according to the profile angle, compared to the other unmatched cases. These results showed that using a pixel-matched collimator in gamma camera systems employing a pixelated scintillator is essential for the exact delineation of small regions using high resolution gamma camera imaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Fowler, J. Nucl. Med. 55, 177 (2014).

    Article  Google Scholar 

  2. E. V. Garcia, T. L. Faber and F. P. Esteves, J. Nucl. Med. 52, 210 (2011).

    Article  Google Scholar 

  3. L. Vermeeren, R. A. V. Olmos, W. M. C. Klop, A. J. Balm and M. W. van den Brekel, J. Nucl. Med. 51, 700 (2010).

    Article  Google Scholar 

  4. M. Mouden et al., Eur. J. Nucl. Med. Mol. Imaging 41, 956 (2014).

    Article  Google Scholar 

  5. V. Koulikov, H. Lerman, M. Kesler and E. Even-Sapir, Eur. J. Nucl. Med. Mol. Imaging Research 5, 63 (2015).

    Google Scholar 

  6. R. Barquero et al., Phys. Med. Biol. 62, 909 (2017).

    Article  Google Scholar 

  7. C. Bouckaert, S. Vandenberghe and R. Van Holen, Phys. Med. Biol. 59, 7521 (2014).

    Article  Google Scholar 

  8. S. L. Bugby, J. E. Lees, B. S. Bhatia and A. C. Perkins, Phys. Med. 30, 331 (2014).

    Article  Google Scholar 

  9. R. J. Palyo, A. J. Sinusas and Y. H. Liu, J. Nucl. Med. 57, 893 (2016).

    Article  Google Scholar 

  10. M. F. Smith, Curr. Cardiol. Rep. 15, 387 (2013).

    Article  Google Scholar 

  11. M. F. Smith, S. Majewski and A. G. Weisenberger, IEEE Trans. Nucl. Sci. 50, 321 (2003).

    Article  ADS  Google Scholar 

  12. C. Beijst, M. Elschot, M. A. Viergever and H. W. de Jong, J. Nucl. Med. 56, 476 (2015).

    Article  Google Scholar 

  13. S. Yamamoto et al., Nuc. Instrum. Methods. Phy. Res. Sect. A 821, 28 (2016).

    Article  ADS  Google Scholar 

  14. S. Yamamoto, H. Watabe, Y. Kanai, K. Kato and J. Hatazawa, Ann. Nucl. Med. 28, 232 (2014).

    Article  Google Scholar 

  15. M. Rozler, H. Liang and W. Chang, IEEE Trans. Nucl. Sci. 5, 1831 (2012).

    Article  ADS  Google Scholar 

  16. S. Yamamoto et al., Phys. Med. Biol. 56, 7555 (2011).

    Article  Google Scholar 

  17. A. Suzuki et al., Phys. Med. Biol. 58, 2199 (2013).

    Article  Google Scholar 

  18. P. Raghunathan et al., IEEE Nuclear Science Symposium Conference Record (San Juan, USA, October 23 - 29, 2005), p. 2001.

  19. M. Bocher et al., Eur. J. Nucl. Med. Mol. Imaging 37, 1887 (2010).

    Article  Google Scholar 

  20. K. Erlandsson, E. Kacperski, D. van Gramberg and B. F. Hutton, Phys. Med. Biol. 54, 2635 (2009).

    Article  Google Scholar 

  21. D. Lazaro et al., Phys. Med. Biol. 49, 271 (2004).

    Article  Google Scholar 

  22. D. Loudos et al., IEEE Trans. Nucl. Sci. 54, 454 (2007).

    Article  ADS  Google Scholar 

  23. B. Arsenali, K. G. Gilhuijs, M. A. Viergever and H. W. de Jong, IEEE Trans. Nucl. Sci. 63, 2527 (2016).

    Article  ADS  Google Scholar 

  24. A. L. Weinmann, C. B. Hruska and M. K. O’Connor, Med. Phys. 36, 845 (2009).

    Article  Google Scholar 

  25. S. R. Cherry, J. A. Sorenson and M. E. Phelps, Physics in Nuclear Medicine 4th edition (Saunders, Philadelphia, 2012), p. 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Bae, J.K., Kim, K.M. et al. Effects of Varying Matching Between Collimator Hole and Scintillator Pixel on Gamma Camera Image Resolution. Journal of the Korean Physical Society 72, 455–461 (2018). https://doi.org/10.3938/jkps.72.455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.455

Keywords

Navigation