Skip to main content
Log in

Simulation of Single Grid-based Phase-contrast Digital Tomosynthesis (PC-DTS)

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Digital tomosynthesis (DTS) is a geometric tomography technique by a limited-angle scan which has been popularly used in both medical and industrial X-ray imaging applications. However, conventional DTS remains limited by low contrast especially in imaging samples of low atomic number Z such as breast and cartilage tissues. In this work, we applied the recently proposed phase-contrast imaging (PCI) technique, the so-called single grid-based PCI, to DTS in attempt to overcome this limitation. PCI has superior soft-tissue imaging capability while DTS has improved image contrast. Combining the two techniques can therefore considerably improve the X-ray imaging performance. We developed a useful simulation platform for single grid-based phase-contrast DTS reconstruction and performed a systematic simulation using a three-dimensional (3D) numerical breast phantom. In the simulation, an X-ray grid having a lead strip density of 200 lines/inch was used and the DTS scan comprised 41 projections within an angle range of θ = ±40° at an X-ray energy of 25 keV. We successfully reconstructed DTS images of much improved contrast, compared to conventional DTS images, which demonstrates the viability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dobbins III and H. McAdams, Eur. Journal of Radiol. 72, 244 (2009).

    Article  Google Scholar 

  2. J. Dobbins III and D. Godfrey, Phys. Med. Biol. 48, 65 (2003).

    Article  Google Scholar 

  3. S. Singh, G. Tourassi, J. Baker, E. Samei and J. Lo, Med. Phys. 35, 3626 (2008).

    Article  Google Scholar 

  4. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens and E. Ziegler, Opt. Express 13, 6296 (2005).

    Article  ADS  Google Scholar 

  5. C. David, B. Nohammer, H. Solak and E. Ziegler, Appl. Phys. Lett. 81, 3287 (2002).

    Article  ADS  Google Scholar 

  6. F. Pfeiffer, J. Herzen, M. Willner, M. Chabior, S. Auweter, M. Reiser and F. Bamberg, Z. Med. Phys. 23, 176 (2013).

    Article  Google Scholar 

  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. Eikenberry, C. BrÖnnimann, C. Grünzweig and C. David, Nat. Mater. 7, 134 (2008).

    Article  ADS  Google Scholar 

  8. S. Mayo, P. Miller, S. Wilkins, T. Davis, D. Gao, T. Gureyev, D. Paganin, D. Parry, A. Pogany and A. Stevenson, J. Microsc. 207, 79 (2002).

    Article  MathSciNet  Google Scholar 

  9. A. Burvall, U. LundstrÖm, P. Takman, D. Larsson and H. Hertz, Opt. Express 19, 10359 (2011).

    Article  ADS  Google Scholar 

  10. D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli and D. Sayers, Phys. Med. Biol. 42, 2015 (1997).

    Article  Google Scholar 

  11. C. Parham, Z. Zhong, D. Connor, L. Chapman and E. Pisano, Acad. Radiol. 16, 911 (2009).

    Article  Google Scholar 

  12. H. Wen, E. Bennett, M. Hegedus and S. Carroll, IEEE Trans. on Med. Imaging 27, 997 (2008).

    Article  Google Scholar 

  13. H. Lim et al., Nucl. Instr. Meth. A 850, 89 (2017).

    Article  ADS  Google Scholar 

  14. H. Lim et al., Opt. comm. 348, 85 (2015).

    Article  ADS  Google Scholar 

  15. https://en.wikipedia.org/wiki/Window function.

  16. H. Wen, E. Bennett, M. Hegedus and S. Rapacchi, Radiology 251, 910 (2009).

    Article  Google Scholar 

  17. J. Oh, H. Cho, D. Kim, S. Choi and U. Je, J. Korean Phys. Soc. 60, 1161 (2012).

    Article  ADS  Google Scholar 

  18. G. Sena, L. Nogueira, D. Braz, A. Almeida, M. Gonzalez, P. Azambuja, M. Cola¸co and R. Barroso, Physica Medica 32, 812 (2016).

    Article  Google Scholar 

  19. A. Sarno, G. Mettivier, B. Golosio, P. Oliva, G. Spandre, F. Di Lillo, C. Fedon, R. Longo and P. Russo, Physica Medica 32, 681 (2016).

    Article  Google Scholar 

  20. http://www.ts-imaging.net/Services/Simple/ICUtilXda ta.aspx.

  21. L. Niklason et al., Radiology 205, 399 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyosung Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Lim, H., Cho, H. et al. Simulation of Single Grid-based Phase-contrast Digital Tomosynthesis (PC-DTS). Journal of the Korean Physical Society 72, 436–443 (2018). https://doi.org/10.3938/jkps.72.436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.436

Keywords

Navigation