Skip to main content
Log in

Photosensor Activities of Cysteamine-Capped ZnS:Mn Nanocrystals in the Direct Detection of Nitrite Ions by Fluorescence Quenching in Aqueous Solutions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, water-dispersible manganese (II)-ion-doped ZnS nanocrystals (ZnS:Mn NCs) were synthesized by capping the surface with polar cysteamine (Cyst) molecules. The obtained NC products were physically and optically characterized using various spectroscopic methods. Additionally, the surface charge and the degree of aggregation for the ZnS:Mn-Cyst NCs in water were determined using electrophoretic and hydrodynamic light scattering methods. The results indicated the formation in water of NC agglomerates with an average size of 278 nm and a positive surface charge (+10.39 mV) at ambient temperature. The positively charged NCs were applied as photosensors for the detection of a specific anion in an aqueous solution. As a result, the ZnS:Mn-Cyst NCs showed an exclusive luminescence quenching effect upon addition of nitrite (NO2 ) ions. Finally, the Stern-Volmer kinetic study on the luminescence quenching mechanism proposed an energy transfer via dynamic collisions between the oppositely charged ZnS:Mn-Cyst NCs and NO2 ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xu, X. Qi, X. Li, Y. Bai and H. Liu, Talanta 146, 714 (2016).

    Article  Google Scholar 

  2. C. R. Kagan and C. B. Murray, Nature Nanotech. 10, 1013 (2015).

    Article  ADS  Google Scholar 

  3. C. Delerue, Nature Mater. (2016), [DOI: 10.1038/nmat4597].

    Google Scholar 

  4. L. Lin, M. Zapata, M. Xiong, Z. Liu, A. Wang, H. Xu, A. G. Borisov, H. Gu, P. Nordlander, J. Aizpurua and J. Ye, Nano Lett. 15, 6419 (2015).

    Article  ADS  Google Scholar 

  5. N. K. Elumalai, C. Vijila, R. Jose, A. Uddin and S. Ramakrishina, Mater. Renew. Sustain. Energy 4, 11 (2015).

    Article  Google Scholar 

  6. S. A. Bhakta, E. Evans, T. E. Beavidez and D. Garcia, Anal. Chim. Acta 872, 7 (2015).

    Article  Google Scholar 

  7. W. W. Yu, Biochem. Biophys. Res. Commun. 348, 781 (2006).

    Article  Google Scholar 

  8. R. C. Somers, M. G. Bawendi and D. G. Nocera, Chem. Soc. Rev. 36, 579 (2007).

    Article  Google Scholar 

  9. V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M. A. Malvindi, G. Vecchio, R. Cingolani, J. L. Nadeau and P. P. Pompa, Nanoscale 5, 307 (2013).

    Article  ADS  Google Scholar 

  10. W. W. Yu, E. Chang, R. Drezek and V. L. Colvin, Biochem. Biophys. Res. Commun. 346, 781 (2006).

    Article  Google Scholar 

  11. L. Li, Y. Cheng, Y. Ding, Y. Lu and F. Zhang, Anal. Meth. 4, 4213 (2012).

    Article  Google Scholar 

  12. K. Chen, H. Shen, Z. Wang, A. Zhou and Q. Xia, Am. J. Anal. Chem. 6, 1 (2015).

    Article  Google Scholar 

  13. J. H. Lee, Y. A. Kim, K. M. Kim, Y. D. Huh, J. W. Hyun, H. S. Kim, S. J. Noh and C. S. Hwang, Bull. Korean Chem. Soc. 28, 1091 (2007).

    Article  Google Scholar 

  14. S. Park, B. Song, H. Y. Kong, J. Byun and C. S. Hwang, Bull. Korean Chem. Soc. 35, 1169 (2014).

    Article  Google Scholar 

  15. D. Vasudevan, A. Trinchi, S. G. Hardin and I. S. Cole, J. Lumin. 166, 88 (2015).

    Article  Google Scholar 

  16. M. B. Gumpu, S. Sethuraman, U. M. Krishnan, J. Bosco and B. Rayappan, Sensors Actuators B 213, 515 (2015).

    Article  Google Scholar 

  17. J. Heo and C. S. Hwang, Bull. Korean Chem. Soc. 36, 2411 (2015).

    Article  Google Scholar 

  18. C. S. Hwang, N. Lee, Y. A. Kim and Y. B. Park, Bull. Korean Chem. Soc. 27, 1809 (2006).

    Article  Google Scholar 

  19. R. N. Bhargava, D. Gallagher, X. Hong and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  ADS  Google Scholar 

  20. T. Kushida, Y. Tanaka and Y. Oka, Solid. State Commun. 14, 617 (1974).

    Article  ADS  Google Scholar 

  21. I. Yu, T. Isobe and M. Senna, J. Phys. Chem. Solids 57, 373 (1996).

    Article  ADS  Google Scholar 

  22. N. Karar, F. Singh and B. R. Mehra, J. Appl. Phys. 95, 656 (2004).

    Article  ADS  Google Scholar 

  23. A. T. R. Williams, S. A. Winfield and J. N. Miller, Analyst 108, 1067 (1983).

    Article  ADS  Google Scholar 

  24. S. R. Meech and D. Philips, J. Photochem. 23, 193 (1983).

    Article  Google Scholar 

  25. J. H. Lee, Y. A. Kim, K. M. Kim, Y. D. Huh, J. W. Hyun, H. S. Kim, S. J. Noh and C. S. Hwang, Bull. Korean Chem. Soc. 28, 1091 (2007).

    Article  Google Scholar 

  26. International Union of Crystallography in International Tables for X-ray Crystallography, Part III (Dordrecht, Netherlands, 1985).

  27. F. W. Jones, in Proceedings of Royal Society of London. Series (The Royal Society Publishing, Terrace, London, UK, 1937).

    Google Scholar 

  28. L. J. Willis, T. M. Loehr, K. F. Miller, A. E. Bruce and E. I. Stiefl, Inorg. Chem. 25, 4289 (1986).

    Article  Google Scholar 

  29. L. Riauba, Chemija 18, 1 (2007).

    Google Scholar 

  30. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds (John Wiley & Son, New York, USA, 1997).

    Google Scholar 

  31. A. Kudelski and W. Hill, Langmuir 15, 3162 (1999).

    Article  Google Scholar 

  32. C. W. Moszczenski and R. J. Hooper, Inorg. Chim. Acta 70, 71 (1983).

    Article  Google Scholar 

  33. M. Ivanda et al., J. Raman Spectrosc. 38, 647 (2007).

    Article  ADS  Google Scholar 

  34. C. Urban and P. Schurtenberger, J. Colloid Interface Sci. 207, 150 (1988).

    Article  ADS  Google Scholar 

  35. S. Park, B. Song, H. Y. Kong, J. Byun and C. S. Hwang, Bull. Korean Chem. Soc. 35, 1169 (2014).

    Article  Google Scholar 

  36. J. Josefwicz and F. R. Hallett, Appl. Opt. 14, 740 (1975).

    Article  ADS  Google Scholar 

  37. X. Liu, L. Guo, L. Cheng and H. Ju, Talanta 78, 691 (2009).

    Article  Google Scholar 

  38. P. Wu, T. Zhao, S. Wang and X. Hou, Nanoscale 6, 43 (2014).

    Article  ADS  Google Scholar 

  39. H. Liu, G. Yang, E. S. Abdel-Halim and J. J. Zhu, Talanta 104, 135 (2013).

    Article  Google Scholar 

  40. D. M. Hirst and J. W. Linnet, J. Chem. Phys. 43, 574 (1965).

    Article  Google Scholar 

  41. B. Unnikrishnan, S. C. Wei, W. J. Chiu, J. Cang, P. H. Hsu and C. C. Huang, Analyst 139, 2221 (2014).

    Article  ADS  Google Scholar 

  42. A. Ianoul, T. Coleman and S. A. Asher, Anal. Chem. 74, 1458 (2002).

    Article  Google Scholar 

  43. I. E. Borissevitch, J. Lumin. 81, 219 (1999).

    Article  Google Scholar 

  44. A. Alonso, B. Etxaniz and M. D. Martinez, Food Add. Cont. 9, 111 (1992).

    Article  Google Scholar 

  45. K. K. Choi and K. W. Fung, Analyst 105, 241 (1980).

    Article  ADS  Google Scholar 

  46. S. Q. Wang, Y. M. Yin and X. Q. Lin, Electrochem. Commun. 6, 259 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong-Soo Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, Y., Hwang, CS. Photosensor Activities of Cysteamine-Capped ZnS:Mn Nanocrystals in the Direct Detection of Nitrite Ions by Fluorescence Quenching in Aqueous Solutions. Journal of the Korean Physical Society 72, 424–430 (2018). https://doi.org/10.3938/jkps.72.424

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.424

Keywords

Navigation