Skip to main content
Log in

Analytical Study of Noise Spectral Density in Q-controlled Atomic Force Microscopy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Q-controlled atomic force microscopy utilizes an oscillating probe with an adjustable quality factor, which is done by adding a variable damping interaction to the probe. While the Q-control can enhance the probe sensitivity by increasing the Q-factor, the applied interaction increases the noise of the probe motion as well. Thus, the signal-to-noise ratio (SNR) associated with the probe sensitivity varies accordingly. Here, we analytically derive the noise spectral density of the tip motion, and theoretically investigate the SNR in Q-controlled atomic force microscopy. We show that both the overall tip-motion signal and the noise monotonically increase with the effective Q-factor under control, whereas the SNR exhibits a global minimum near the original Q value and asymptotically scales as the square root of the effective Q-factor. Therefore, in general, the Qcontrol technique can be used to alter the quality factor, the magnitudes of signal and noise, and the probe sensitivity in amplitude-modulation atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Anczykowski, J. P. Cleveland, D. Krüger, V. Elings and H. Fuchs, Appl. Phys. A: Mater. Sci. Process. 66, S885 (1998).

    Article  ADS  Google Scholar 

  2. R. Garćia and R. Perez, Surf. Sci. Rep. 47, 197 (2002).

    Article  ADS  Google Scholar 

  3. M. Heyde, M. Sterrer, H-P. Rust and H-J. Freund, Appl. Phys. Lett. 87, 083104 (2005).

    Article  ADS  Google Scholar 

  4. J. Tamayo, A. D. L. Humphris and M. J. Miles, Appl. Phys. Lett. 77, 582 (2000).

    Article  ADS  Google Scholar 

  5. T. Sulchek et al., Appl. Phys. Lett. 76, 1473 (2000).

    Article  ADS  Google Scholar 

  6. H. Hlscher and U. D. Schwarz, Int. J. Nonlinear Mech. 42, 608 (2007).

    Article  ADS  Google Scholar 

  7. J. Tamayo, A. D. L. Humphris, R. J. Owen and M. J. Miles, Biophys. J. 81, 526 (2001).

    Article  Google Scholar 

  8. S. Gao, L. F. Chi, S. Lenhert, B. Anczykowski, C. M. Niemeyer, M. Adler and H. Fuchs, Chem. Phys. Chem. 6, 384 (2001).

    Article  Google Scholar 

  9. T. R. Rodriguez and R. Garcia, Appl. Phys. Lett. 82, 4821 (2003).

    Article  ADS  Google Scholar 

  10. J. Jahng, M. Lee, H. Noh, Y. Seo and W. Jhe, Appl. Phys. Lett. 91, 023103 (2007).

    Article  ADS  Google Scholar 

  11. M. Lee, J. G. Hwang, J. Jahng, Q. Kim, H. Noh, S. An and W. Jhe, J. Appl. Phy. 120, 074503 (2016).

    Article  ADS  Google Scholar 

  12. J. Kim, B. Sung, B. I. Kim and W. Jhe, J. Appl. Phys. 114, 054302 (2013).

    Article  ADS  Google Scholar 

  13. P. D. Ashby, Appl. Phys. Lett. 91, 254102 (2007).

    Article  ADS  Google Scholar 

  14. J. Jahng, M. Lee, C. Stambaugh, W. Bak and W. Jhe, Phys. Rev. A 84, 022318 (2011).

    Article  ADS  Google Scholar 

  15. M. Poggio, C. L. Degen, H. J. Mamin and D. Rugar, Phys. Rev. Lett. 99, 017201 (2007).

    Article  ADS  Google Scholar 

  16. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Grblacher, M. Aspelmeyer and O. Painter, Nature 478, 89 (2011).

    Article  ADS  Google Scholar 

  17. N. Wax, Noise and stochastic processes (Dover Publications, New York, 1964).

    Google Scholar 

  18. T. R. Albrecht, P. Grtter, D. Horne and D. Rugar, J. Appl. Phys. 69, 668 (1991).

    Article  ADS  Google Scholar 

  19. M. Lee and W. Jhe, Phys. Rev. Lett. 97, 036104 (2006).

    Article  ADS  Google Scholar 

  20. M. Lee, B. Kim, J. Kim and W. Jhe, Nat. Commun. 6, 7359 (2015).

    Article  ADS  Google Scholar 

  21. J. Comtet et al., Nat. Mater. 16, 634 (2017).

    Article  ADS  Google Scholar 

  22. T. K. Shim et al., J. Korean Phys. Soc. 48, 1476 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., An, S. & Jhe, W. Analytical Study of Noise Spectral Density in Q-controlled Atomic Force Microscopy. Journal of the Korean Physical Society 72, 384–389 (2018). https://doi.org/10.3938/jkps.72.384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.384

Keywords

Navigation