Skip to main content
Log in

Constructing a Device for Calculating the Atmospheric Correction Factor for the Calibration the Radiation-Absorbed Dose in Radiotherapy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to measure the air temperature and the air pressure, develop an atmospheric correction factor calculation device (ACFCD), and utilize it. Because the radiation dose varies with the temperature, pressure, and humidity, is essential calibrating doses after calculating the atmospheric correction factor. In this study, we constructed an ACFCD by using a micro controller, an air thermometer, and an air pressure sensor. We measured the temperature and the air pressure in nine different spaces and confirmed the changes in the factors. We obtained the measured data as comma-separated-values files, and we created a Microsoft Excel macro for the analysis to calculate the average temperature, pressure, and atmospheric correction factor; we determined trends by using graphs. As a result of the performance evaluation, we confirmed that the space temperature and the air pressure measurement were the same (p > 0.05). In addition, we confirmed that the micro controller unit measured the heating, which we observed to be 3.9 ◦ C. The ACFCD that we developed in this study confirmed the possibility of replacing existing air thermometers and barometers and can contribute to improving work efficiency. In addition, in light of the basic concept of the ACFCD, we consider that the device will be useful for ensuring safe, accurate use of radiation once it is made more practical through additional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. D. Eric and C. S. Wuu, Int. J. Radiat. Oncol. 56, 1 (2003).

    Google Scholar 

  2. A. P. James et al., Med. Phys. 20, 4 (1993).

    Google Scholar 

  3. E. K. Eric et al., Med. Phys. 36, 9 (2009).

    Google Scholar 

  4. S. H. Benedict et al., Med Phys. 37, 8 (2010).

    Google Scholar 

  5. K. A. Ahmed, B. M. Barney, O. K. Macdonald, R. C. Miller, Y. I. Graces, N. N. Laack, M. G. Haddock, R. L. Foote and K. R. Olivier, Am. J. Clin. Oncol. 36, 5 (2013).

    Article  Google Scholar 

  6. H. M. Devoid, E. R. McTyre, B. R. Page, L. Metheny-Barlow, J. Ruiz and M. D. Chan, Front biosci. 8, 203 (2016).

    Article  Google Scholar 

  7. A. W. M. Sharfo, M. L. P. Dirkx, S. Breedveld, A. M. Romero and B. L. M. Heijmen, Radiother Oncol. 123, 1 (2017).

    Article  Google Scholar 

  8. J. Seuntjens, M. Olivares, M. Evans and P. Ervin, Med. Phys. 32, 9 (2005).

    Article  Google Scholar 

  9. P. R. Almond, P. J. Peter, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath and D. W. O. Rogers, Med. Phys. 26, 9 (1999).

    Article  Google Scholar 

  10. M. S. Huq, P. Andreo and H. Song, Phys. Med. Biol. 46, 11 (2001).

    Article  Google Scholar 

  11. B. S. Baigrie, The history of modern science and mathematics, edited by Charles Scribner’s Sons (New York, USA, 2002).

    Google Scholar 

  12. J. C. Crosbie, I. Svalbe, S. M. Midgley, N. Yagi, P. A. W. Rogers and R. A. Lewis, Phys. Med. Biol. 53, 23 (2008).

    Article  Google Scholar 

  13. C. Constantinou, F. H. Attix and B. R. Paliwal, Med. Phys. 9, 3 (1982).

    Article  Google Scholar 

  14. H. Roed and M. Figel, Radiat. Prot. Dosim. 125, 1 (2007).

    Google Scholar 

  15. H. Palmans, L. Naffa, J. D. Jans, S. Gillis, M. T. Hoornaert, C. Martens, M. Piessens, H. Thierens, A. V. D. Plaetsen and S. Vynckier, Phys. Med. Biol. 47, 3 (2002).

    Article  Google Scholar 

  16. J. D. Indra and C. Z. Timothy, Med. phys. 31, 3 (2004).

    Google Scholar 

  17. J. L. R. Daniel and D. W. O. Rogers, Med. phys. 33, 12 (2006).

    Google Scholar 

  18. K. Zink and J. Wulff, Phys. Med. Biol. 53, 6 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong-Cheol Heo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, JW., Lee, JH., Ahn, JO. et al. Constructing a Device for Calculating the Atmospheric Correction Factor for the Calibration the Radiation-Absorbed Dose in Radiotherapy. Journal of the Korean Physical Society 72, 353–358 (2018). https://doi.org/10.3938/jkps.72.353

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.353

Keywords

Navigation