Journal of the Korean Physical Society

, Volume 72, Issue 2, pp 260–269 | Cite as

Dual roles of a flouride-doped SnO2/TiO2 bilayer based on inverse opal/nanoparticle structure for water oxidation

  • Gun Yun
  • Maheswari Balamurugan
  • Kwang-Soon Ahn
  • Sang-Kwon Lee
  • Soon Hyung Kang
  • Dong-Ha Lim


Fluorine-doped tin dioxide (FTO) inverse opals (IOs) were fabricated on a template of polystyrene (PS) beads (diameter = 400 nm (±20 nm)) by using a spin-coating method. The concentration of the FTO precursor, in particular, the 1.0 M FTO concentration solution significantly influenced the morphology of the IO film. The FTO nanoparticles upon the FTO IO film were sparsely formed relative to these formed from the 0.5 M FTO solution. To compensate for the large band gap (E g = 3.8 eV) of FTO in the photoelectrochemical (PEC) reaction, we deposited a photoactive TiO2 shell on the FTO IO film by using the sol-gel method. The morphological change and the crystalline properties of the FTO IO and TiO2-coated FTO IO (hereafter referred to as FTO IO/TiO2) films, were investigated with field emission scanning electron microscopy and X-ray diffraction, respectively. The PEC behaviors of the samples were tested in a 0.1 M KOH solution under one sun illumination (100 mW/cm2 with an AM 1.5 filter). The highest PEC performance was obtained with the 1.0 M FTO IO/TiO2 film, which produced a photocurrent density (Jsc) of 3.28 mA/cm2 at 1.23 V (vs. normal hydrogen electrode (NHE), as briefly expressed to 1.23 VNHE) compared to 2.42 mA/cm2 at 1.23 VNHE with the 0.5 M FTO IO/TiO2 film. The approximately 30% enhanced performance of the 1.0 M FTO IO/TiO2 film was mainly attributed to the peculiar structure comprised of the FTO nanoparticle layer and IO films to form a bilayer structure, providing a much larger surface area, as well as complete coverage of the photoactive TiO2 nanoparticles through the FTO IO skeleton in the proper band alignment to boost the charge separation/transfer phenomenon, finally resulting in the enhanced PEC activity.


Photoelectrochemical water splitting Fluorine-doped SnO2 Inverse opals TiO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Fujishima and K. Honda, Nature 238, 37 (1972).ADSCrossRefGoogle Scholar
  2. [2]
    Y. Li and J. Z. Zhang, Laser Photonics Rev. 4, 517 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    T. K. Townsend, E. M. Sabio, N. D. Browning and F. E. Osterloh, ChemSusChem. 4, 185 (2011).Google Scholar
  4. [4]
    M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari and D. D. Dionysiou, Appl. Catal. B Environ. 125, 331 (2012).CrossRefGoogle Scholar
  5. [5]
    J. Gong, J. Liang and K. Sumathy, Energy Rev. 16, 5848 (2012).Google Scholar
  6. [6]
    J. B. Goodenough and K. S. Park, J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle Scholar
  7. [7]
    S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V. R. Satsangi, R. Shrivastav and S. Dass, Int. J. Hydrogen Energy. 37, 18713 (2012).CrossRefGoogle Scholar
  8. [8]
    J. Brillet, J-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel and K. Sivula, Nat. Photonics 6, 824 (2012).ADSCrossRefGoogle Scholar
  9. [9]
    A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne and J. A. Glasscock, Int. J. Hydrogen Energy. 31, 1999 (2006).CrossRefGoogle Scholar
  10. [10]
    S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, D. Klug and J. R. Durrant, Chem. Commun. (Camb). 47, 716 (2011).CrossRefGoogle Scholar
  11. [11]
    M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chem. Rev. 110, 6446 (2010).CrossRefGoogle Scholar
  12. [12]
    F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel and K. Sivula, Chem. Sci. 2, 737 (2011).CrossRefGoogle Scholar
  13. [13]
    P. Liao, J. A. Keith and E. A. Carter, J. Am. Chem. Soc. 134, 13296 (2012).CrossRefGoogle Scholar
  14. [14]
    K. R. Reyes-Gil and D. B. Robinson, ACS Appl. Mater. Interfaces 5, 12400 (2013).CrossRefGoogle Scholar
  15. [15]
    C. A. Bignozzi, S. Caramori, V. Cristino, R. Argazzi, L. Meda and A. Tacca, Chem. Soc. Rev. 42, 2228 (2013).CrossRefGoogle Scholar
  16. [16]
    A. J. Nozik, Nature 257, 383 (1975).ADSCrossRefGoogle Scholar
  17. [17]
    R. I. Bickley, Nature 280, 306 (1979).ADSCrossRefGoogle Scholar
  18. [18]
    J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. L. Briseno and P. Yang, ACS Cent. Sci. 2, 80 (2016).CrossRefGoogle Scholar
  19. [19]
    J. Balapanuru, G. Chiu, C. Su, N. Zhou, Z. Hai, Q. H. Xu and K. P. Loh, ACS Appl. Mater. Interfaces 7, 880 (2015).CrossRefGoogle Scholar
  20. [20]
    X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon, I. T. Choi, J. K. Kim, H. K. Kim, D. H. Wang and J. H. Park, Nano Energy 13, 182 (2015).CrossRefGoogle Scholar
  21. [21]
    P. Hartmann, D. K. Lee, B. M. Smarsly and J. Janek, ACS Nano 4, 3147 (2010).CrossRefGoogle Scholar
  22. [22]
    J. Gan, X. Lu, B. B. Rajeeva, R. Menz, Y. Tong and Y. Zheng, Chem. Electro. Chem. 2, 1385 (2015).Google Scholar
  23. [23]
    X. Dong, J. Tao, Y. Li and H. Zhu, Appl. Surf. Sci. 256, 2532 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    J. Y. Kim, S. B. Choi, D. W. Kim, S. Lee, H. S. Jung, J. K. Lee and K. S. Hong, Langmuir 24, 4316 (2008).CrossRefGoogle Scholar
  25. [25]
    P. Zhang, L. Gao, X. Song and J. Sun, Adv. Mater. 27, 562 (2015).CrossRefGoogle Scholar
  26. [26]
    J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn and R. R. D. Meade, Photonic Crystals Molding the Flow of Light, second edition (Princeton University Press, 2008).zbMATHGoogle Scholar
  27. [27]
    F. Sordello, V. Maurino and C. Minero, Molecular Photochemistry-Various Aspects (2012), p. 63.Google Scholar
  28. [28]
    M. Curti, J. Schneider, D. W. Bahnemann and C. B. Mendive, J. Phys. Chem. Lett. 6, 3903 (2015).CrossRefGoogle Scholar
  29. [29]
    P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith and L. M. Herz, ACS Nano. 5, 5158 (2011).CrossRefGoogle Scholar
  30. [30]
    M. G. Helander, M. T. Greiner, Z. B. Wang, W. M. Tang and Z. H. Lu, J. Vac. Sci. Technol. A. 29, 11019 (2011).CrossRefGoogle Scholar
  31. [31]
    Y. Gun, G. Y. Song, V. H. V. Quy, J. Heo, H. Lee, K-S. Ahn and S. H. Kang, ACS Appl. Mater. Interfaces 7, 20292 (2015).CrossRefGoogle Scholar
  32. [32]
    X-Y. Xue, Z-H. Chen, L-L. Xing, S. Yuan and Y-J. Chen, Chem. Commun. (Camb.) 47, 5205 (2011).CrossRefGoogle Scholar
  33. [33]
    M. Ishii, M. Harada, A. Tsukigase and H. Nakamura, J. Opt. A Pure Appl. Opt. 9, S372 (2007).CrossRefGoogle Scholar
  34. [34]
    J. H. Lee, W. Leung, J. Ahn, T. Lee, I. S. Park, K. Constant and K. M. Ho, Appl. Phys. Lett. 90, 151101 (2007).ADSCrossRefGoogle Scholar
  35. [35]
    R. van de Krol and M. Grätzel, Photoelectrochemical Hydrogen Production (Springer US, Boston, MA, 2012).CrossRefGoogle Scholar
  36. [36]
    A. Tacca, L. Meda, G. Marra, A. Savoini, S. Caramori, V. Cristino, C. A. Bignozzi, V. G. Pedro, P. P. Boix, S. Gimenez and J. Bisquert, Chem. Phys. Chem. 13, 3025 (2012).CrossRefGoogle Scholar
  37. [37]
    S. W. Shin, M. P. Suryawanshi, H. K. Hong, G. Yun, D. Lim, J. Heo, S. H. Kang and J. H. Kim, Electrochim. Acta 219, 470 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Gun Yun
    • 1
  • Maheswari Balamurugan
    • 2
  • Kwang-Soon Ahn
    • 3
  • Sang-Kwon Lee
    • 4
  • Soon Hyung Kang
    • 4
  • Dong-Ha Lim
    • 5
  1. 1.Department of Advanced Chemical Materials EngineeringChonnam National UniversityGwangjuKorea
  2. 2.Department of ChemistryChonnam National UniversityGwangjuKorea
  3. 3.School of Chemical EngineeringYeungnam UniversityGyeongsanKorea
  4. 4.Department of Chemistry Education and Optoelectronics Convergence Research CenterChonnam National UniversityGwangjuKorea
  5. 5.Korea Institute of Industrial TechnologyBusanKorea

Personalised recommendations