Measurement of excitation functions for natPb(p,xn)199,200,201Pb reactions with stacked foil activation technique at KOMAC

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The excitation functions of natPb(p,xn)199,200,201Pb reactions within the proton energy of 71.5 - 91.7 MeV were measured by using the 100-MeV linear accelerator at the Korea Multi-Purpose Accelerator Complex (KOMAC). The stacked foil activation and off-line gamma-ray spectrometric technique was used in the present study. The 27Al(p, 3p + n)24Na monitor reaction was used to estimate the proton flux. The excitation functions of natPb(p, xn)199,200,201Pb reactions were derived from the photo-peak activities of delayed γ-rays of the produced nuclei. The present results have been compared with the literature data and the theoretical values from TENDL-2015 library. The natPb(p,xn)199,201Pb reaction cross-sections at the proton energy of 91.7 MeV has been measured for the first time, whereas for the proton energies of 71.5 - 84.5 MeV are in general agreement with the literature data within limits of uncertainty. Overall, the experimental data from the present work and literature show increase trend with proton energy similar to the theoretical values of TENDL-2015 library with some systematic differences.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    R. Michel and S. Neumann, Indian Academy of Science (Earth and Planetary Science) 107, 4 (1998).

    Google Scholar 

  2. [2]

    R. Michel and R. Bodemann, Nucl. Instr. Meth. Phys. Res. B 129, 153 (1997).

    ADS  Article  Google Scholar 

  3. [3]

    J. Yoon, J. Lee and S. Lee, J. Korean Phys. Soc. 70, 47 (2017).

    ADS  Article  Google Scholar 

  4. [4]

    K. J. Mathews and M. N. Rao, Nucl. Instr. Meth. Phys. Res. B 94, 449 (1994).

    ADS  Article  Google Scholar 

  5. [5]

    C. Schanabel and P. Gartenmann, Conference Proceedings-Italian Physical Society. 59, 1559 (1997).

    Google Scholar 

  6. [6]

    E. Gilabert and B. Lavielle, Nucl. Instr. Meth. Phys. Res. B 145, 293 (1998).

    ADS  Article  Google Scholar 

  7. [7]

    E. Tel and A. Aydin, Journal of Fusion Energy 31, 73 (2012).

    ADS  Article  Google Scholar 

  8. [8]

    S. Van Eck, S. Goriely, A. Jorissen and B. Plez, Nature 412, 793 (2001).

    ADS  Article  Google Scholar 

  9. [9]

    J. Kuhnhenn, U. Herpers, W. Glasser, R. Michel, P. W. Kubik and M. Suter, Radiochimica Acta 89, 697 (2001).

    Article  Google Scholar 

  10. [10]

    M. Gloris and R. Michel, Nucl. Instr. Meth. Phys. Res. B 113, 429 (1996).

    ADS  Article  Google Scholar 

  11. [11]

    M. C. Lagunas-Solar and F. E. Little, Appl. Radiat. Isot. 32, 817 (1981).

    Article  Google Scholar 

  12. [12]

    F. Ditroi, F. Tarkanyi, S. Takace and A. Hermanne, Appl. Radiat. Isot. 90, 208 (2014).

    Article  Google Scholar 

  13. [13]

    A. J. Koing et al., TENDL-2015 (2015).

    Google Scholar 

  14. [14]

    S. G. Lee, H. S. Kim, H. J. Kwon and Y. S. Cho, Proceedings of IPAC 2016, 217 (2016).

    Google Scholar 

  15. [15]

    Ziegler and F. James, SRIM-2008 code, Stopping Power and Range of Ions in Matter, Nuclear Energy Agency of the OECD (NEA).

  16. [16]

    R. B. Firestone and V. S. Shirley, Table of Isotopes (WILEY-INTERSCIENC, 1996).

    Google Scholar 

  17. [17]

    G. N. Kim, M. U. Khandaker, K. Kim, M. W. Lee and K. S. Kim, J. Korean Phys. Soc. 59, 1821 (2011).

    Article  Google Scholar 

  18. [18]

    K. S. Kim, M. U. Khandaker, H. Naik and G. N. Kim, Nucl. Instrum. Meth. Phys. Res. B 322, 63 (2014).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samyol Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Yoon, J., Ro, T. et al. Measurement of excitation functions for natPb(p,xn)199,200,201Pb reactions with stacked foil activation technique at KOMAC. Journal of the Korean Physical Society 72, 228–233 (2018). https://doi.org/10.3938/jkps.72.228

Download citation

Keywords

  • natPb(p,xn)199,200,201Pb reactions
  • Excitation function
  • Stacked-foil activation
  • Off-line γ-ray spectrometry
  • 100-MeV proton beam
  • KOMAC
  • TENDL-2015