Terahertz Investigation of Dirac Materials: Graphene and Topological Insulators

Abstract

Light-matter interaction in two-dimensional Dirac materials exhibits intriguing features in comparison to conventional semiconductors. Recent discoveries of graphene and three-dimensional topological insulators (TIs) have demonstrated novel terahertz (THz) optoelectronics, such that control over the electronic properties of Dirac-type carriers can be conducted by optical techniques. In this paper, we review recent investigations of graphene and TIs using broadband THz radiation and ultrashort optical pulses. After discussing state-of-the-art progress in graphene and TI investigations (Sec. I), we present ultrafast optical techniques that employ optical-pump THz-probe spectroscopy (Sec. II). In Sec. III, broadband THz responses in Dirac materials are examined according to semi-classical theories, and corresponding physical rationales are extended to elucidate Dirac plasmons in graphene and TIs (Sec. IV). Finally, brief summaries with research outlooks for future THz applications of graphene and TIs are provided (Sec. V).

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. H. C. Neto, Rev. Mod. Phys. 81, 109 (2009).

    ADS  Article  Google Scholar 

  2. [2]

    F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, Nat. Nanotechnol. 9, 780 (2014).

    ADS  Article  Google Scholar 

  3. [3]

    Y. Zhang, Y-W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).

    ADS  Article  Google Scholar 

  4. [4]

    K. S. Novoselov et al., Nature 438, 197 (2005).

    ADS  Article  Google Scholar 

  5. [5]

    R. R. Nair et al., Science 320, 1308 (2008).

    ADS  Article  Google Scholar 

  6. [6]

    F. Wang et al., Science 320, 206 (2008).

    ADS  Article  Google Scholar 

  7. [7]

    I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi and J. Son, Nano Lett. 12, 551 (2012).

    ADS  Article  Google Scholar 

  8. [8]

    J. Yan, Y. Zhang, P. Kim and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).

    ADS  Article  Google Scholar 

  9. [9]

    H. Yan, D. Song, K. F. Mak, I. Chatzakis, J. Maultzsch and T. F. Heinz, Phys. Rev. B 80, 121403 (2009).

    ADS  Article  Google Scholar 

  10. [10]

    S. H. Lee et al., Nat. Mater. 11, 936 (2012).

    ADS  Article  Google Scholar 

  11. [11]

    W. Gao et al., Nano Lett. 14, 1242 (2014).

    ADS  Article  Google Scholar 

  12. [12]

    J. Horng et al., Phys. Rev. B 83, 165113 (2011).

    ADS  Article  Google Scholar 

  13. [13]

    L. Ren et al., Nano Lett. 12, 3711 (2012).

    ADS  Article  Google Scholar 

  14. [14]

    H. Choi et al., Appl. Phys. Lett. 94, 172102 (2009).

    ADS  Article  Google Scholar 

  15. [15]

    G. Jnawali, Y. Rao, H. Yan and T. F. Heinz, Nano Lett. 13, 524 (2013).

    ADS  Article  Google Scholar 

  16. [16]

    S-F. Shi, T-T. Tang, B. Zeng, L. Ju, A. Zettl and F. Wang, Nano Lett. 14, 1578 (2014).

    ADS  Article  Google Scholar 

  17. [17]

    A. J. Frenzel, C. H. Lui, Y. C. Shin, J. Kong and N. Gedik, Phys. Rev. Lett. 113, 056602 (2014).

    ADS  Article  Google Scholar 

  18. [18]

    A. J. Frenzel et al., Appl. Phys. Lett. 102, 113111 (2013).

    ADS  Article  Google Scholar 

  19. [19]

    G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram and P. Avouris, ACS Nano 5, 5848 (2011).

    Article  Google Scholar 

  20. [20]

    C-H. Liu, Y-C. Chang, T. B. Norris and Z. Zhong, Nat. Nanotechnol. 9, 273 (2014).

    ADS  Article  Google Scholar 

  21. [21]

    B. Sensale-Rodriguez et al., Nat. Commun. 3, 780 (2012).

    Article  Google Scholar 

  22. [22]

    P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman and N. D. Robinson, ACS Nano 4, 637 (2010).

    Article  Google Scholar 

  23. [23]

    W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li and D. Y. Tang, Appl. Phys. Lett. 96, 031106 (2010).

    ADS  Article  Google Scholar 

  24. [24]

    P. H. Ho, S. S. Li, Y. T. Liou, C. Y. Wen, Y. H. Chung and C. W. Chen, Adv. Mater. 27, 282 (2015).

    Article  Google Scholar 

  25. [25]

    Q. Li et al., Nat. Commun. 6, 7082 (2015).

    Article  Google Scholar 

  26. [26]

    J. Kim et al., Nano Lett. 12, 5598 (2012).

    ADS  Article  Google Scholar 

  27. [27]

    C. In, H. Kim, B. Min and H. Choi, Adv. Mater. 28, 1495 (2015).

    Article  Google Scholar 

  28. [28]

    M. S. Hwang et al., Nano Lett. 17, 1892 (2017).

    ADS  Article  Google Scholar 

  29. [29]

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    ADS  Article  Google Scholar 

  30. [30]

    Y. Cao et al., Nat. Phys. 9, 499 (2013).

    Article  Google Scholar 

  31. [31]

    J. E. Moore, Nature 464, 194 (2010).

    ADS  Article  Google Scholar 

  32. [32]

    Y. Xia et al., Nat. Phys. 5, 18 (2009).

    Article  Google Scholar 

  33. [33]

    C. W. Luo et al., Nano Lett. 13, 5797 (2013).

    ADS  Article  Google Scholar 

  34. [34]

    J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero and N. Gedik, Nat. Nanotechnol. 7, 96 (2012).

    ADS  Article  Google Scholar 

  35. [35]

    F. Xiu et al., Nat. Nanotechnol. 6, 216 (2011).

    ADS  Article  Google Scholar 

  36. [36]

    D. Kong et al., Nat. Nanotechnol. 6, 705 (2011).

    ADS  Article  Google Scholar 

  37. [37]

    L. Jiang, C. L. Kane and J. Preskill, Phys. Rev. Lett. 106, 130504 (2011).

    ADS  Article  Google Scholar 

  38. [38]

    C. Lee, F. Katmis, P. Jarillo-herrero, J. S. Moodera and N. Gedik, Nat. Commun. 7, 12014 (2016).

    ADS  Article  Google Scholar 

  39. [39]

    A. B. Kuzmenko, E. Van Heumen, F. Carbone and D. Van Der Marel, 100, 117401 (2008).

    Google Scholar 

  40. [40]

    J. M. Dawlaty et al., Appl. Phys. Lett. 93, 131905 (2008).

    ADS  Article  Google Scholar 

  41. [41]

    I. Gierz et al., Nat. Mater. 12, 1119 (2013).

    ADS  Article  Google Scholar 

  42. [42]

    Y. H. Wang et al., Phys. Rev. Lett. 109, 127401 (2012).

    ADS  Article  Google Scholar 

  43. [43]

    S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 102, 206412 (2009).

    ADS  Article  Google Scholar 

  44. [44]

    E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).

    ADS  Article  Google Scholar 

  45. [45]

    P. Di Pietro et al., Nat. Nanotechnol. 8, 556 (2013).

    ADS  Article  Google Scholar 

  46. [46]

    T. Stauber, G. Gómez-Santos and L. Brey, ACS Photonics 4, 2978 (2017).

    Article  Google Scholar 

  47. [47]

    T. Stauber, G. Gómez-Santos and L. Brey, Phys. Rev. B 88, 205427 (2013).

    ADS  Article  Google Scholar 

  48. [48]

    T. Stauber, J. Phys. Condens. Matter 26, 123201 (2014).

    Article  Google Scholar 

  49. [49]

    C. In et al., Nano Lett. 18, 734 (2018).

    ADS  Article  Google Scholar 

  50. [50]

    E. McCann, Phys. Rev. B 74, 161403 (2006).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyunyong Choi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

In, C., Choi, H. Terahertz Investigation of Dirac Materials: Graphene and Topological Insulators. J. Korean Phys. Soc. 72, 1484–1490 (2018). https://doi.org/10.3938/jkps.72.1484

Download citation

Keywords

  • Terahertz
  • Graphene
  • Topological insulators
  • Spectroscopy
  • Plasmon