Skip to main content
Log in

Terahertz Investigation of Dirac Materials: Graphene and Topological Insulators

  • Review Articles
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Light-matter interaction in two-dimensional Dirac materials exhibits intriguing features in comparison to conventional semiconductors. Recent discoveries of graphene and three-dimensional topological insulators (TIs) have demonstrated novel terahertz (THz) optoelectronics, such that control over the electronic properties of Dirac-type carriers can be conducted by optical techniques. In this paper, we review recent investigations of graphene and TIs using broadband THz radiation and ultrashort optical pulses. After discussing state-of-the-art progress in graphene and TI investigations (Sec. I), we present ultrafast optical techniques that employ optical-pump THz-probe spectroscopy (Sec. II). In Sec. III, broadband THz responses in Dirac materials are examined according to semi-classical theories, and corresponding physical rationales are extended to elucidate Dirac plasmons in graphene and TIs (Sec. IV). Finally, brief summaries with research outlooks for future THz applications of graphene and TIs are provided (Sec. V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. C. Neto, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, Nat. Nanotechnol. 9, 780 (2014).

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y-W. Tan, H. L. Stormer and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  4. K. S. Novoselov et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  5. R. R. Nair et al., Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  6. F. Wang et al., Science 320, 206 (2008).

    Article  ADS  Google Scholar 

  7. I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi and J. Son, Nano Lett. 12, 551 (2012).

    Article  ADS  Google Scholar 

  8. J. Yan, Y. Zhang, P. Kim and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).

    Article  ADS  Google Scholar 

  9. H. Yan, D. Song, K. F. Mak, I. Chatzakis, J. Maultzsch and T. F. Heinz, Phys. Rev. B 80, 121403 (2009).

    Article  ADS  Google Scholar 

  10. S. H. Lee et al., Nat. Mater. 11, 936 (2012).

    Article  ADS  Google Scholar 

  11. W. Gao et al., Nano Lett. 14, 1242 (2014).

    Article  ADS  Google Scholar 

  12. J. Horng et al., Phys. Rev. B 83, 165113 (2011).

    Article  ADS  Google Scholar 

  13. L. Ren et al., Nano Lett. 12, 3711 (2012).

    Article  ADS  Google Scholar 

  14. H. Choi et al., Appl. Phys. Lett. 94, 172102 (2009).

    Article  ADS  Google Scholar 

  15. G. Jnawali, Y. Rao, H. Yan and T. F. Heinz, Nano Lett. 13, 524 (2013).

    Article  ADS  Google Scholar 

  16. S-F. Shi, T-T. Tang, B. Zeng, L. Ju, A. Zettl and F. Wang, Nano Lett. 14, 1578 (2014).

    Article  ADS  Google Scholar 

  17. A. J. Frenzel, C. H. Lui, Y. C. Shin, J. Kong and N. Gedik, Phys. Rev. Lett. 113, 056602 (2014).

    Article  ADS  Google Scholar 

  18. A. J. Frenzel et al., Appl. Phys. Lett. 102, 113111 (2013).

    Article  ADS  Google Scholar 

  19. G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram and P. Avouris, ACS Nano 5, 5848 (2011).

    Article  Google Scholar 

  20. C-H. Liu, Y-C. Chang, T. B. Norris and Z. Zhong, Nat. Nanotechnol. 9, 273 (2014).

    Article  ADS  Google Scholar 

  21. B. Sensale-Rodriguez et al., Nat. Commun. 3, 780 (2012).

    Article  Google Scholar 

  22. P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman and N. D. Robinson, ACS Nano 4, 637 (2010).

    Article  Google Scholar 

  23. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li and D. Y. Tang, Appl. Phys. Lett. 96, 031106 (2010).

    Article  ADS  Google Scholar 

  24. P. H. Ho, S. S. Li, Y. T. Liou, C. Y. Wen, Y. H. Chung and C. W. Chen, Adv. Mater. 27, 282 (2015).

    Article  Google Scholar 

  25. Q. Li et al., Nat. Commun. 6, 7082 (2015).

    Article  Google Scholar 

  26. J. Kim et al., Nano Lett. 12, 5598 (2012).

    Article  ADS  Google Scholar 

  27. C. In, H. Kim, B. Min and H. Choi, Adv. Mater. 28, 1495 (2015).

    Article  Google Scholar 

  28. M. S. Hwang et al., Nano Lett. 17, 1892 (2017).

    Article  ADS  Google Scholar 

  29. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  30. Y. Cao et al., Nat. Phys. 9, 499 (2013).

    Article  Google Scholar 

  31. J. E. Moore, Nature 464, 194 (2010).

    Article  ADS  Google Scholar 

  32. Y. Xia et al., Nat. Phys. 5, 18 (2009).

    Article  Google Scholar 

  33. C. W. Luo et al., Nano Lett. 13, 5797 (2013).

    Article  ADS  Google Scholar 

  34. J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero and N. Gedik, Nat. Nanotechnol. 7, 96 (2012).

    Article  ADS  Google Scholar 

  35. F. Xiu et al., Nat. Nanotechnol. 6, 216 (2011).

    Article  ADS  Google Scholar 

  36. D. Kong et al., Nat. Nanotechnol. 6, 705 (2011).

    Article  ADS  Google Scholar 

  37. L. Jiang, C. L. Kane and J. Preskill, Phys. Rev. Lett. 106, 130504 (2011).

    Article  ADS  Google Scholar 

  38. C. Lee, F. Katmis, P. Jarillo-herrero, J. S. Moodera and N. Gedik, Nat. Commun. 7, 12014 (2016).

    Article  ADS  Google Scholar 

  39. A. B. Kuzmenko, E. Van Heumen, F. Carbone and D. Van Der Marel, 100, 117401 (2008).

    Google Scholar 

  40. J. M. Dawlaty et al., Appl. Phys. Lett. 93, 131905 (2008).

    Article  ADS  Google Scholar 

  41. I. Gierz et al., Nat. Mater. 12, 1119 (2013).

    Article  ADS  Google Scholar 

  42. Y. H. Wang et al., Phys. Rev. Lett. 109, 127401 (2012).

    Article  ADS  Google Scholar 

  43. S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 102, 206412 (2009).

    Article  ADS  Google Scholar 

  44. E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).

    Article  ADS  Google Scholar 

  45. P. Di Pietro et al., Nat. Nanotechnol. 8, 556 (2013).

    Article  ADS  Google Scholar 

  46. T. Stauber, G. Gómez-Santos and L. Brey, ACS Photonics 4, 2978 (2017).

    Article  Google Scholar 

  47. T. Stauber, G. Gómez-Santos and L. Brey, Phys. Rev. B 88, 205427 (2013).

    Article  ADS  Google Scholar 

  48. T. Stauber, J. Phys. Condens. Matter 26, 123201 (2014).

    Article  Google Scholar 

  49. C. In et al., Nano Lett. 18, 734 (2018).

    Article  ADS  Google Scholar 

  50. E. McCann, Phys. Rev. B 74, 161403 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunyong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

In, C., Choi, H. Terahertz Investigation of Dirac Materials: Graphene and Topological Insulators. J. Korean Phys. Soc. 72, 1484–1490 (2018). https://doi.org/10.3938/jkps.72.1484

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.1484

Keywords

Navigation