Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

Abstract

We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    ADS  Article  Google Scholar 

  2. [2]

    B. Radisavljevic, A. Radenovic, J. Brivio, V. Glacometti and A. Kis, Nat. Nanotechol. 6, 147 (2011).

    ADS  Article  Google Scholar 

  3. [3]

    H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi and A. Javey, Nano Lett. 12, 3788–2792 (2012).

    ADS  Article  Google Scholar 

  4. [4]

    D, Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam, ACS Nano 8, 1102 (2014).

    Article  Google Scholar 

  5. [5]

    K. Kam and B. Parkinson, J. Phys. Chem. 86, 463 (1982).

    Article  Google Scholar 

  6. [6]

    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Article  Google Scholar 

  7. [7]

    K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dobonos, I. Grigorieva and A. Firsov, Science 306, 666 (2004).

    ADS  Article  Google Scholar 

  8. [8]

    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozoc and A. K. Geim, 102, 10451 (2005).

    Google Scholar 

  9. [9]

    A. Kuc, N. Zibouche and T. Heine, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 245213 (2013).

    ADS  Article  Google Scholar 

  10. [10]

    Y. L. Hyang, Y. F. Chen, W. J. Zhang, S. Y. Quek, C. H. Chen, L. J. Li, W. T. Hsu, W. H. Chang, Y. J. Zheng and W. Chen, Nat. Commun. 6, 6298 (2015).

    Article  Google Scholar 

  11. [11]

    J. D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Q. Qin, X. Zhang, A. X, L. Wang, H. Zhang and A. T. S. Wee, ACS Nano 8, 5323 (2014).

    ADS  Article  Google Scholar 

  12. [12]

    S. Wi, H. Kim, H. Nam, L. J. Guo, E. Meyhofer and X. G. Liang, ACS Nano 8, 5270 (2014).

    ADS  Article  Google Scholar 

  13. [13]

    R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H.Wu, Y. Huang and X. F. Duan, Nat. Commun. 5, 5143 (2014).

    Article  Google Scholar 

  14. [14]

    X. G. Liang, ACS Nano 7, 5870 (2013).

    Article  Google Scholar 

  15. [15]

    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nat. Nanotechnol. 8, 497 (2013).

    ADS  Article  Google Scholar 

  16. [16]

    W. M. Parkin et al., ACS Nano. 10, 4134 (2016).

    Article  Google Scholar 

  17. [17]

    S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne and P. Samori, Adv. Mater. 29, 1606760 (2017).

    Article  Google Scholar 

  18. [18]

    H. Li et al., Nat. Mater. 15, 48 (2015).

    ADS  Article  Google Scholar 

  19. [19]

    B. Peng, G. Yu, Y. Zhao, Q. Xu, G. Xing, X, Liu, D. Fu, B. Liu, J. R. S. Tan, W. Tang, H. Lu, J. Xie, L. Deng, T. C. Sum and K. P. Loh, ACS Nano 10, 6383 (2016).

    Article  Google Scholar 

  20. [20]

    H. Qiu, T. Xu, Z.Wang, W. Ren, H, Nan, Z, Ni, Q, Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang and X. Wang, Nat. Commun. 4, 2642 (2013).

    Google Scholar 

  21. [21]

    K. Cho, M. Min, T. Y. Kim, H. Jeong, J. Pak, J. K. Kim, J. Jang, S. J. Yun, Y. H. Lee, W. K. Hong and T. K. Lee, ACS Nano 9, 8044 (2015).

    Article  Google Scholar 

  22. [22]

    L. Liang and V. Meunier, Nanoscale 6, 5394 (2014).

    ADS  Article  Google Scholar 

  23. [23]

    C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, ACS Nano 4, 2695 (2010).

    Article  Google Scholar 

  24. [24]

    H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).

    Article  Google Scholar 

  25. [25]

    Y. Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller and T. Grasser, 2D Mater. 3, 035004 (2016).

    Article  Google Scholar 

  26. [26]

    A. D. Bartolomeo, L. Genovese, F. Giubileo, L. Lemmo, G. Luong, T. Foller and M. Schleberger, 2D Mater. 5, 015014 (2017).

    Article  Google Scholar 

  27. [27]

    M. A. Baker, C. Lenardi and W. Gissler, Appl. Surf. Sci. 150, 255 (1999).

    ADS  Article  Google Scholar 

  28. [28]

    P. A. Spevack and N. S. McIntyr, J. Phys. Chem. 97, 1103 (1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takhee Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, B.Y., Cho, K., Pak, J. et al. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors. J. Korean Phys. Soc. 72, 1203–1208 (2018). https://doi.org/10.3938/jkps.72.1203

Download citation

Keywords

  • Molybdenum disulfide
  • Electron beam irradiation
  • Chemical treatment
  • Electrical properties