Advertisement

Journal of the Korean Physical Society

, Volume 72, Issue 10, pp 1203–1208 | Cite as

Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

  • Barbara Yuri Choi
  • Kyungjune Cho
  • Jinsu Pak
  • Tae-Young Kim
  • Jae-Keun Kim
  • Jiwon Shin
  • Junseok Seo
  • Seungjun Chung
  • Takhee Lee
Article
  • 46 Downloads

Abstract

We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

Keywords

Molybdenum disulfide Electron beam irradiation Chemical treatment Electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).ADSCrossRefGoogle Scholar
  2. [2]
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Glacometti and A. Kis, Nat. Nanotechol. 6, 147 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi and A. Javey, Nano Lett. 12, 3788–2792 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    D, Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam, ACS Nano 8, 1102 (2014).CrossRefGoogle Scholar
  5. [5]
    K. Kam and B. Parkinson, J. Phys. Chem. 86, 463 (1982).CrossRefGoogle Scholar
  6. [6]
    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dobonos, I. Grigorieva and A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  8. [8]
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozoc and A. K. Geim, 102, 10451 (2005).Google Scholar
  9. [9]
    A. Kuc, N. Zibouche and T. Heine, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 245213 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    Y. L. Hyang, Y. F. Chen, W. J. Zhang, S. Y. Quek, C. H. Chen, L. J. Li, W. T. Hsu, W. H. Chang, Y. J. Zheng and W. Chen, Nat. Commun. 6, 6298 (2015).CrossRefGoogle Scholar
  11. [11]
    J. D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Q. Qin, X. Zhang, A. X, L. Wang, H. Zhang and A. T. S. Wee, ACS Nano 8, 5323 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    S. Wi, H. Kim, H. Nam, L. J. Guo, E. Meyhofer and X. G. Liang, ACS Nano 8, 5270 (2014).ADSCrossRefGoogle Scholar
  13. [13]
    R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H.Wu, Y. Huang and X. F. Duan, Nat. Commun. 5, 5143 (2014).CrossRefGoogle Scholar
  14. [14]
    X. G. Liang, ACS Nano 7, 5870 (2013).CrossRefGoogle Scholar
  15. [15]
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, Nat. Nanotechnol. 8, 497 (2013).ADSCrossRefGoogle Scholar
  16. [16]
    W. M. Parkin et al., ACS Nano. 10, 4134 (2016).CrossRefGoogle Scholar
  17. [17]
    S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne and P. Samori, Adv. Mater. 29, 1606760 (2017).CrossRefGoogle Scholar
  18. [18]
    H. Li et al., Nat. Mater. 15, 48 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    B. Peng, G. Yu, Y. Zhao, Q. Xu, G. Xing, X, Liu, D. Fu, B. Liu, J. R. S. Tan, W. Tang, H. Lu, J. Xie, L. Deng, T. C. Sum and K. P. Loh, ACS Nano 10, 6383 (2016).CrossRefGoogle Scholar
  20. [20]
    H. Qiu, T. Xu, Z.Wang, W. Ren, H, Nan, Z, Ni, Q, Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang and X. Wang, Nat. Commun. 4, 2642 (2013).Google Scholar
  21. [21]
    K. Cho, M. Min, T. Y. Kim, H. Jeong, J. Pak, J. K. Kim, J. Jang, S. J. Yun, Y. H. Lee, W. K. Hong and T. K. Lee, ACS Nano 9, 8044 (2015).CrossRefGoogle Scholar
  22. [22]
    L. Liang and V. Meunier, Nanoscale 6, 5394 (2014).ADSCrossRefGoogle Scholar
  23. [23]
    C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, ACS Nano 4, 2695 (2010).CrossRefGoogle Scholar
  24. [24]
    H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).CrossRefGoogle Scholar
  25. [25]
    Y. Y. Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller and T. Grasser, 2D Mater. 3, 035004 (2016).CrossRefGoogle Scholar
  26. [26]
    A. D. Bartolomeo, L. Genovese, F. Giubileo, L. Lemmo, G. Luong, T. Foller and M. Schleberger, 2D Mater. 5, 015014 (2017).CrossRefGoogle Scholar
  27. [27]
    M. A. Baker, C. Lenardi and W. Gissler, Appl. Surf. Sci. 150, 255 (1999).ADSCrossRefGoogle Scholar
  28. [28]
    P. A. Spevack and N. S. McIntyr, J. Phys. Chem. 97, 1103 (1993).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Barbara Yuri Choi
    • 1
  • Kyungjune Cho
    • 1
  • Jinsu Pak
    • 1
  • Tae-Young Kim
    • 1
  • Jae-Keun Kim
    • 1
  • Jiwon Shin
    • 1
  • Junseok Seo
    • 1
  • Seungjun Chung
    • 1
  • Takhee Lee
    • 1
  1. 1.Department of Physics and Astronomy, and Institute of Applied PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations