Skip to main content
Log in

Electronic structure change of NiS2−xSe x in the metal-insulator transition probed by X-ray absorption spectroscopy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The electronic structure change of NiS2−xSe x as a function of Se concentration x has been studied by Ni L-edge X-ray absorption spectroscopy (XAS). The XAS spectra show distinct features in Ni L3 edge, indicating whether the system is insulating or metallic. These features can be semi-quantitatively explained within the framework of the configurational interaction cluster model (CICM). In the S-rich region, relatively large charge-transfer energy (Δ ~ 5 eV) from ligand p to Ni 3d states and a little small p-d hybridization strength (V pdσ ~ 1.1 eV) can reproduce the experimental spectra in the CICM calculation, and vice versa in the Se-rich region. Our analysis result is consistent with the Zaanen-Sawatzky-Allen scheme that the systems in S-rich side (x ≤ 0.5) are a charge transfer insulator. However, it also requires that the Δ value must change abruptly in spite of the small change of x near x = 0.5. As a possible microscopic origin, we propose a percolation scenario where a long range connection of Ni[(S,Se)2]6 octahedra with Se-Se dimers plays a key role to gap closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Bouchard, J. L. Gillson and H. S. Jarrett, Mater. Res. Bull. 8, 489 (1973).

    Article  Google Scholar 

  2. H. S. Jarrett et al., Mater. Res. Bull. 8, 877 (1973).

    Article  Google Scholar 

  3. J. A. Wilson, The Metallic and Nonmetallic States of Matter (Taylor & Francis, London, 1985), p. 215.

    Google Scholar 

  4. A. Hsmann, D S. Jin, Y. V. Zastavker, T. F. Rosenbaum, X. Yao and J. M. Honig, Science 274, 1874 (1996).

    Article  ADS  Google Scholar 

  5. J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  6. R. L. Kautz, M. S. Dresselhaus, D. Adler and A. Linz, Phys. Rev. B 6, 2078 (1972).

    Article  ADS  Google Scholar 

  7. A. K. Mabatah, E. J. Yoffa, P. C. Eklund, M. S. Dresselhaus and D. Adler, Phys. Rev. B 21, 1676 (1980).

    Article  ADS  Google Scholar 

  8. A. Y. Matsuura, Z-X. Shen, D. S. Dessau, C-H. Park, T. Thio, J. W. Bennett and O. Jepsen, Phys. Rev. B 53, R7584 (1996).

    Article  ADS  Google Scholar 

  9. K. Mamiya, T. Mizokawa and A. Fujimori, Phys. Rev. B 58, 9611 (1998).

    Article  ADS  Google Scholar 

  10. A. Perucchi, C. Marini, M. Valentini, P. Postorino, R. Sopracase, P. Dore, P. Hansmann, O. Jepsen, G. Sangiovanni, A. Toschi, K. Held, D. Topwal, D. D. Sarma and S. Lupi, Phys. Rev. B 80, 073101 (2009).

    Article  ADS  Google Scholar 

  11. A. Damascelli, Physica Scripta T109, 61 (2004).

    Article  ADS  Google Scholar 

  12. A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  13. A. J. Kim, M. Y. Choi and G. S. Jeon, J. Kor. Phys. Soc. 64, 268 (2014).

    Article  ADS  Google Scholar 

  14. J. Kuneš, L. Baldassarre, B. Schachner, K. Rabia, C. A. Kuntscher, Dm. M. Korotin, V. I. Anisimov, J. A. McLeod, E. Z. Kurmaev and A. Moewes, Phys. Rev. B 81, 035122 (2010).

    Article  ADS  Google Scholar 

  15. C-Y. Moon, H. Kang, B. G. Jang and J. H. Shim, Phys. Rev. B 92, 235130 (2015).

    Article  ADS  Google Scholar 

  16. H. C. Xu, Y. Zhang, M. Xu, R. Peng, X. P. Shen, V. N. Strocov, M. Shi, M. Kobayashi, T. Schmitt, B. P. Xie and D. L. Feng, Phys. Rev. Lett. 112, 087603 (2014).

    Article  ADS  Google Scholar 

  17. J. M. Charnock, C. M. B. Henderson, J. F. W. Mosselmans and R. A. D. Pattrick, Phys. Chem. Minerals 23, 403 (1996).

    Article  ADS  Google Scholar 

  18. S. Suga, A. Kimura, T. Matsushita, A. Sekiyama, S. Imada, K. Mamiya, A. Fujimori, H. Takahashi and N. Mori, Phys. Rev. B 60, 5049 (1999).

    Article  ADS  Google Scholar 

  19. T. Roisnel and J. Rodriguez-Carvajal, FullProf, 2000.

    Google Scholar 

  20. G. van der Laan, J. Zaanen, G. A. Sawatzky, R. Karnatak and J-M. Esteva, Phys. Rev. B 33, 4253 (1986).

    Article  ADS  Google Scholar 

  21. F. M. F. de Groot and J. C. Fuggle, Phys. Rev. B 42, 5459 (1990).

    Article  ADS  Google Scholar 

  22. K. Cho, H. Koh, J. Park, S-J. Oh, H-D. Kim, M. Han, J-H. Park, C. T. Chen, Y. D. Kim, J-S. Kim and B. T. Jonker, Phys. Rev. B 63, 155203 (2001).

    Article  ADS  Google Scholar 

  23. H-J. Noh, S. Yeo, J-S. Kang, C. L. Zhang, S-W. Cheong, S-J. Oh and P. D. Johnson, Appl. Phys. Lett. 88, 081911 (2006).

    Article  ADS  Google Scholar 

  24. R. Otero, J. L. Martin de Vidales and C. de las Heras, J. Phys. Condens. Matter 10, 6919 (1998).

    Article  ADS  Google Scholar 

  25. L. Vegard, Zeitschrift für Physik 5, 17 (1921).

    Article  ADS  Google Scholar 

  26. L. Kurzawski and K. Malarz, Reports on Math. Phys. 70, 163 (2012).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jin Noh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Park, K.J., Cho, EJ. et al. Electronic structure change of NiS2−xSe x in the metal-insulator transition probed by X-ray absorption spectroscopy. Journal of the Korean Physical Society 72, 111–115 (2018). https://doi.org/10.3938/jkps.72.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.111

Keywords

Navigation