Skip to main content
Log in

Influence of hydrophobicity on the chemical treatments of graphene

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The defect-free transfer of graphene grown by using chemical vapor deposition is essential for its applications to electronic devices. For the reduction of inevitable chemical residues, such as polar molecules and ionized impurities resulting from the transfer process, a hydrophobic polydimethyl-siloxane (PDMS) film was coated on a SiO2/Si wafer. The hydrophobic PDMS film resulted in fewer defects in graphene in comparison to a bare SiO2/Si wafer, as measured with Raman spectroscopy. We also studied the influence of the hydrophobic PDMS film on the chemical doping of graphene. Here, nitric acid (HNO3) was used to make p-type graphene. When graphene was transferred onto a SiO2/Si wafer coated with the hydrophobic PDMS film, fewer defects, compared to those in graphene transferred onto a bare SiO2/Si wafer, were created in grapheme by HNO3 as measured with Raman spectroscopy. The experiments suggest that when graphene is transferred onto a hydrophobic film, the number of defects created by chemical molecules can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, V. I. Fallko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, Nature 490, 192 (2012).

    Article  ADS  Google Scholar 

  3. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  ADS  Google Scholar 

  4. K. P. Loh, Q Bao, P. K. Ang and J Yang, J. Mater. Chem. 20, 2277 (2010).

    Article  Google Scholar 

  5. M. Huang, H. Yan, T. F. Heinz and J. Hone, Nano Lett. 10, 4074 (2010).

    Article  ADS  Google Scholar 

  6. L. Zhao et al., Science 333, 999 (2011).

    Article  ADS  Google Scholar 

  7. Y. C. Chuang, J. Y. Wu and M. F. Lin, Sci. Rep. 3, 1368 (2013).

    Article  Google Scholar 

  8. B. Sahu, H. Min and S. K. Banerjee, Phy. Rev. B 82, 115426 (2010).

    Article  ADS  Google Scholar 

  9. X. Fan, R. Nouchi and K. Tanigaki, J. Phys. Chem. C 115, 12960 (2011).

    Article  Google Scholar 

  10. Q. H. Wang et al., Nat. Chem. 7, 724 (2012).

    Article  Google Scholar 

  11. F. M. Koehler, A. Jacobsen, K. Ensslin, C. Stampfer and W. J. Stark, Small 6, 1125 (2010).

    Article  Google Scholar 

  12. R. Sharma, J. H. Baik, C. J. Perera and M. S. Strano, Nano Lett. 10, 398 (2010).

    Article  ADS  Google Scholar 

  13. F. Banhart, J. Kotakoski and A. V. Krasheninnikov, ACS Nano 5, 26 (2010).

    Article  Google Scholar 

  14. M. A. Bissett, M. Tsuji and H. Ago, J. Phys. Chem. C 117, 3152 (2013).

    Article  Google Scholar 

  15. E. H. Hwang, S. Adam and S. Das Sharma, Phys. Rev. Lett. 98, 186806 (2007).

    Article  ADS  Google Scholar 

  16. J. Martin, N. Akerman, G. Ulbrich, T. Lohmann, J. H. Smet, K. Von Klitzing and A. Yocoby, Nat. Phys. 4, 144 (2008).

    Article  Google Scholar 

  17. Y. Zhang, V. W. Brar, C. Girit, A. Zettle and M. F. Crommie, Nat. Phys. 5, 722 (2009).

    Article  Google Scholar 

  18. A. B. Kuper, Surf. Sci. 13, 172 (1969).

    Article  ADS  Google Scholar 

  19. M. A. Bissett, S. Konabe, S. Okada, M. Tsuji and H. Ago, ACS Nano 7, 10335 (2013).

    Article  Google Scholar 

  20. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing and H. Hosono, Nano Lett. 10, 1149 (2010).

    Article  ADS  Google Scholar 

  21. D. B. Asay and S. H. Kim, J. Phys Chem. B 109, 16760 (2005).

    Article  Google Scholar 

  22. T. O. Wehling, M. I. Katsnelson and A. I. Lichtenstein, Chem. Phys. Lett. 476, 125 (2009).

    Article  ADS  Google Scholar 

  23. T. O. Wehling, M. I. Katsnelson and A. I. Lichtenstein, Appl. Phys. Lett. 93, 202110 (2008).

    Article  ADS  Google Scholar 

  24. M. Temmen, O. Ochedowski, M. Schleberger, M. Reichling and T. R. J. Bollmann, New J. Phys. 16, 053039 (2014).

    Article  ADS  Google Scholar 

  25. Y. Lee, S. Bae, H. Jang, S Jang, S. Zhu, S. H Sim, Y. Song, B. H. Hong and J. H. Ahn, Nano Lett. 10, 490 (2010).

    Article  ADS  Google Scholar 

  26. L. D’Arsie, S. Esconjauregui, R. S. Weatherup, X. Wu, W. E. Arter, H. Sugime, C. Cepek and J. Robertson, RSC Adv. 6, 113185 (2016).

    Article  Google Scholar 

  27. A. C. Ferrari, J. C. Meyer, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  28. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).

    Article  Google Scholar 

  29. J. L. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer and E. D. Williams, Phys. Rev. Lett. 102, 2368051 (2009).

    Google Scholar 

  30. Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov and A. K. Geim, Nano Lett. 10, 3868 (2010).

    Article  ADS  Google Scholar 

  31. Z. H. Ni, Y. Y. Wang, T. Yu and Z. X. Shen, Nano Res. 1, 273 (2008).

    Article  Google Scholar 

  32. C. C. Chen, W. Z. Bao, J. Theiss, C. Dames, C. N. Lau and S. B. Cronin, Nano Lett. 9, 4172 (2009).

    Article  ADS  Google Scholar 

  33. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, Nano Lett. 2, 2301 (2008).

    Google Scholar 

  34. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed. (John Wiley and Sons, New York, 2001).

    Google Scholar 

  35. J. Ding, F. T. Fisher and F. H. Yang, J. Vac. Sci. Technol. B 34, 051205 (2016)

    Article  Google Scholar 

  36. A. Jorio, R. Saito, G. Dresselhaus and M. S. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, 1st ed. (Wiley VCH Verlag GmbH and Co. KGaA, Weinhein, Germany, 2009).

    Google Scholar 

  37. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, Nano Lett. 10, 751 (2010).

    Article  ADS  Google Scholar 

  38. T. Oh, Trans. on Electrical and Electronic Mater. 14, 246 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Real Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, K.B., Khadka, I.B., Kim, E.H. et al. Influence of hydrophobicity on the chemical treatments of graphene. Journal of the Korean Physical Society 72, 107–110 (2018). https://doi.org/10.3938/jkps.72.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.72.107

Keywords

Navigation