Skip to main content
Log in

A transistor based on 2D material and silicon junction

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor (i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene’s stability. A transistor current gain (β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and P. Avouris, Science 327, 662 (2010).

    Article  ADS  Google Scholar 

  2. Y. Wu, Y-m. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu and P. Avouris, Nature 472, 74 (2011).

    Article  ADS  Google Scholar 

  3. Y-M. Lin, A. Valdes-Garcia, S.-J. Han, D. B. Farmer et al., Science 332, 1294 (2011).

    Article  ADS  Google Scholar 

  4. W. Han, A. Hsu, J. Wu, K. Jing and T. Palacios, Electron Device Letters, IEEE 31, 906 (2010).

    Article  ADS  Google Scholar 

  5. Z. Wang, Z. Zhang, H. Xu, L. Ding, S. Wang and L.-M. Peng, Applied Physics Letters 96, 173104 (2010).

    Article  ADS  Google Scholar 

  6. X. Yang, G. Liu, A. A. Balandin and K. Mohanram, ACS Nano 4, 5532 (2010).

  7. S-J. Han, K. A. Jenkins, A. Valdes Garcia, A. D. Franklin, A. A. Bol and W. Haensch, Nano Letters 11, 3690 (2011).

    Article  ADS  Google Scholar 

  8. E. Guerriero, L. Polloni, L. G. Rizzi, M. Bianchi, G. Mondello and R. Sordan, Small 8, 357 (2012).

    Article  Google Scholar 

  9. S. Lee, K. Lee, C.-H. Liu and Z. Zhong, Nanoscale 4, 639 (2012).

    Article  ADS  Google Scholar 

  10. S. Lee, K. Lee, C.-H. Liu, G. S. Kulkarni and Z. Zhong, Nat. Commun. 3, 1018 (2012).

    Article  Google Scholar 

  11. S-K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park and J.-H. Ahn, Nano Letters 12, 3472 (2012).

    Article  ADS  Google Scholar 

  12. B. J. Kim, H. Jang, S.-K. Lee, B. H. Hong, J.-H. Ahn and J. H. Cho, Nano Letters 10, 3464 (2010).

    Article  ADS  Google Scholar 

  13. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, Nature 458, 872 (2009).

    Article  ADS  Google Scholar 

  14. Y-W. Son, M. L. Cohen and S. G. Louie, Physical Review Letters 97, 216803 (2006).

    Article  ADS  Google Scholar 

  15. Z. Chen, Y.-M. Lin, M. J. Rooks and P. Avouris, Physica E: Low-dimensional Systems and Nanostructures 40, 228 (2007).

    Article  ADS  Google Scholar 

  16. K. F. Mak, C. H. Lui, J. Shan and T. F. Heinz, Physical Review Letters 102, 256405 (2009).

    Article  ADS  Google Scholar 

  17. S. Lee, K. Lee and Z. Zhong, Nano Letters 10, 4702 (2010).

    Article  ADS  Google Scholar 

  18. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo and L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).

    Article  ADS  Google Scholar 

  19. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen and F. Wang, Nature 459, 820 (2009).

    Article  ADS  Google Scholar 

  20. X. Tian, J. Xu and X. Wang, The Journal of Physical Chemistry B 114, 11377 (2010).

    Article  Google Scholar 

  21. F. Schwierz, Nat. Nano 5, 487 (2010).

    Article  Google Scholar 

  22. N. Harada, K. Yagi, S. Sato and N. Yokoyama, Applied Physics Letters 96, 012102 (2010).

    Article  ADS  Google Scholar 

  23. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle et al., Science 335, 947 (2012).

    Article  ADS  Google Scholar 

  24. Y. An, A. Behnam, E. Pop and A. Ural, Applied Physics Letters 102, 013110 (2013).

    Article  ADS  Google Scholar 

  25. S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. Appleton and A. Hebard, Phys. Rev. X 2, 011002 (2012).

    Google Scholar 

  26. H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu and H. Yang, Applied Physics Letters 100, 122108 (2012).

    Article  ADS  Google Scholar 

  27. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim and P. Kim, Nano Letters 9, 3430 (2009).

    Article  ADS  Google Scholar 

  28. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung and K. Kim, Science 336, 1140 (2012).

    Article  ADS  Google Scholar 

  29. W. Bradley, Proc. IRE 41, 1702 (1953).

    Article  Google Scholar 

  30. R. F. Pierret, Semiconductor device fundamentals (Addison-Wesley, 1996).

    Google Scholar 

  31. S. M. Sze and K. K. Ng, Physics of semiconductor devices (John Wiley & Sons, 2006).

    Book  Google Scholar 

  32. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  33. S. Lee, K. Lee, C.-H. Liu, G. S. Kulkarni and Z. Zhong, Nat. Commun. 3, 1018 (2012).

    Article  Google Scholar 

  34. M. M. Lucchese, F. Stavale, E. Ferreira, C. Vilani, M. Moutinho, R. B. Capaz, C. Achete and A. Jorio, Carbon 48, 1592 (2010).

    Article  Google Scholar 

  35. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski and A. A. Bol, ACS Nano 4, 3839 (2010).

    Article  Google Scholar 

  36. Mohammed. Nazer, Ph.D. dissertation (Florida Institute of Technology, 2007).

    Google Scholar 

  37. C.-C. Chen, M. Aykol, C.-C. Chang, A. Levi and S. B. Cronin, Nano Letters 11, 1863 (2011).

    Article  ADS  Google Scholar 

  38. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu and P. Avouris, Nat. Nano 6, 179 (2011).

    Article  Google Scholar 

  39. J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda et al., Applied Physics Letters 98, 053103 (2011).

    Article  ADS  Google Scholar 

  40. A. Hsu, W. Han, K. K. Kang, K. Jing and T. Palacios, Electron Device Letters, IEEE 32, 1008 (2011).

    Article  ADS  Google Scholar 

  41. A. Yu, Solid-State Electron. 13, 239 (1970).

    Article  ADS  Google Scholar 

  42. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Letters 8, 2458 (2008).

    Article  ADS  Google Scholar 

  43. K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab and K. Kim, Nature 490, 192 (2012).

    Article  ADS  Google Scholar 

  44. J. Campos-Delgado, Y. Kim, T. Hayashi, A. Morelos-Gómez, M. Hofmann et al., Chem. Phys. Lett. 469, 177 (2009).

    Article  ADS  Google Scholar 

  45. H.-Y. Kim, C. Lee, J. Kim, F. Ren and S. J. Pearton, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 30, 030602 (2012).

    Article  ADS  Google Scholar 

  46. Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices (Cambridge University Press, Cambridge, UK; New York, 2009).

    Google Scholar 

  47. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng et al., Nat. Nano. 5, 574 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, S. A transistor based on 2D material and silicon junction. Journal of the Korean Physical Society 71, 92–100 (2017). https://doi.org/10.3938/jkps.71.92

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.92

Keywords

Navigation