Skip to main content
Log in

Theoretical analysis of simultaneously improving the light coupling efficiency and bandwidth between two separated grating couplers using integrated distributed Bragg reflectors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 15 December 2017

Abstract

A pair of identical grating couplers can be used to transmit/receive optical signals between vertically separated optical waveguides. We propose a silicon-based grating coupler with an integrated distributed Bragg reflector (DBR) to improve the light coupling bandwidth and efficiency. The optimized grating coupler structure and DBR position were developed using the finite-difference time-domain method. We numerically analyzed the coupling efficiency and bandwidth performance, and the proposed grating coupler structure achieved a theoretical peak coupling efficiency of 0.824 and a 1 dB bandwidth of 157.2 nm at close to 1550 nm, both of which represent improvements of more than two-fold compared with those of conventional grating couplers without a DBR layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. B. Miller and H. M. Ozaktas, J. Parallel Distrib. Comput. 41, 42 (1997).

    Article  Google Scholar 

  2. D. A. B. Miller, IEEE J. Sel. Top. Quant. Electron. 6, 1312 (2000).

    Article  ADS  Google Scholar 

  3. D. A. B. Miller, Proc. IEEE 97, 1166 (2009).

    Article  Google Scholar 

  4. S. Bernabé et al., Opt. Exp. 20, 7886 (2012).

    Article  ADS  Google Scholar 

  5. J. Kang et al., Jpn. J. Appl. Phys. 51, 120203 (2012).

    Article  ADS  Google Scholar 

  6. K. Itoh et al., IEEE J. Sel. Top. Quan. Electron. 22, 4403209 (2016).

    Article  Google Scholar 

  7. A. V. Krishnamoorthy et al., IEEE J. Quan. Electron. 45, 409 (2009).

    Article  ADS  Google Scholar 

  8. J. E. Cunningham et al., IEEE J. Sel. Top. Quan. Electron. 17, 546 (2011).

    Article  ADS  Google Scholar 

  9. X. Zheng et al., J. Lightw. Technol. 30, 641 (2012)

    Article  ADS  Google Scholar 

  10. A. V. Krishnamoorthy et al., Proc. IEEE 97, 1337 (2009).

    Article  Google Scholar 

  11. W. Bogaerts et al., IEEE J. Lightw. Technol. 23, 401 (2005).

    Article  ADS  Google Scholar 

  12. X. Zheng et al., Opt. Exp. 16, 15052 (2008).

    Article  ADS  Google Scholar 

  13. P. Sun and R. M. Reano, Opt. Exp. 19, 4722 (2011).

    Article  ADS  Google Scholar 

  14. J. Yao et al., Proc. SPIE 7944, 794405 (2011).

    Article  Google Scholar 

  15. Y. Kuno et al., Jpn. J. Appl. Phys. 54, 04DG04 (2015).

    Article  Google Scholar 

  16. M. H. Lee et al., J. Opt. Soc. Korea 20, 291 (2016).

    Article  Google Scholar 

  17. M. Asaduzzaman et al., Opt. Quan. Electron. 45, 478 (2016).

    Article  Google Scholar 

  18. A. Mekis et al., IEEE J. Sel. Top. Quan. Electron. 17, 597 (2011).

    Article  ADS  Google Scholar 

  19. D. Taillaert et al., IEEE J. Quan. Electron. 38, 949 (2002).

    Article  ADS  Google Scholar 

  20. X. Chen et al., IEEE Photon. Technol. Lett. 22, 1156 (2010).

    Article  ADS  Google Scholar 

  21. T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1985).

    Article  Google Scholar 

  22. Q. Zhong et al., Opt. Exp. 22, 18224 (2014).

    Article  ADS  Google Scholar 

  23. M. K. Emsley, O. Dosunmu and M. S. Ünlü, IEEE J. Sel. Top. Quan. Electron. 8, 948 (2002).

    Article  ADS  Google Scholar 

  24. H. Zhang et al., Opt. Exp. 22, 21800 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk-Kee Sung.

Additional information

A correction to this article is available at http://dx.doi.org/10.3938/jkps.71.1075

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, YS., Cho, CH. & Sung, HK. Theoretical analysis of simultaneously improving the light coupling efficiency and bandwidth between two separated grating couplers using integrated distributed Bragg reflectors. J. Korean Phys. Soc. 71, 647–651 (2017). https://doi.org/10.3938/jkps.71.647

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.647

Keywords

Navigation