High-resolution X-ray phase-contrast imaging with a grating interferometer


High-resolution X-ray imaging is a promising technique for studies of biological structures on a micron-scale. Conventional X-ray imaging is limited by its poor soft tissue contrast. X-ray phasecontrast imaging has the potential to significantly improve the biological contrast in terms of the refractive index variation. In this paper, we analyze an X-ray grating interferometer we set up with a micro-focus X-ray source and a flat panel detector. The system utilizes the geometric magnification for high-resolution imaging. After our initial calibration, the visibility function reaches about 10%. The experiments demonstrate that the spatial resolution of the system is about 10 μm, which helps reveal features invisible with X-ray attenuation-based imaging.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. Momose, T. Takeda, Y. Itai and K. Hirano, Nat. Med. 2, 473 (1996).

    Article  Google Scholar 

  2. [2]

    A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai et al., Jpn. J. of Appl. Phys. 42, L866 (2003).

    ADS  Article  Google Scholar 

  3. [3]

    C. David, B. Nohammer, H. H. Solak and E. Ziegler, Appl. Phys. Lett. 81, 3287 (2002).

    ADS  Article  Google Scholar 

  4. [4]

    F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. 2, 258 (2006).

    Article  Google Scholar 

  5. [5]

    F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry et al., Nat Mater 7, 134 (2008).

    ADS  Article  Google Scholar 

  6. [6]

    P. B. Noel, J. Herzen, A. A. Fingerle, M. Willner, M. K. Stockmar et al., Z. Med. Phys. 23, 204 (2013).

    Article  Google Scholar 

  7. [7]

    T. Takeda, A. Momose, J. Wu, Q. W. Yu, T. Zeniya et al., Circulation 105, 1708 (2002).

    Article  Google Scholar 

  8. [8]

    G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann et al., J. R. Soc. Interface 7, 1665 (2010).

    Article  Google Scholar 

  9. [9]

    S. Lang, I. Zanette, M. Dominietto, M. Langer, A. Rack et al., J. Appl. Phys. 116, 154903 (2014).

    ADS  Article  Google Scholar 

  10. [10]

    M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer et al., Appl. Phys. Lett. 90, 224101 (2007).

    ADS  Article  Google Scholar 

  11. [11]

    S. W. Lee, K-Y. Kim, O. Y. Kwon, N. Kardjilov, M. Dawson et al., Appl. Phys. Express 3, 106602 (2010).

    ADS  Article  Google Scholar 

  12. [12]

    I. Manke, N. Kardjilov, R. Schafer, A. Hilger, M. Strobl et al., Nat. Commun. 1, 125 (2010).

    Article  Google Scholar 

  13. [13]

    H. Fujita, D. Y. Tsai, T. Itoh, K. Doi, J. Morishita et al., IEEE T. on Med. Imaging 11, 34 (1992).

    Article  Google Scholar 

  14. [14]

    T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova et al., J. Appl. Phys. 106, 054703 (2009).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seung Wook Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.W., Kim, Y., Lee, S. et al. High-resolution X-ray phase-contrast imaging with a grating interferometer. Journal of the Korean Physical Society 71, 538–542 (2017). https://doi.org/10.3938/jkps.71.538

Download citation


  • X-ray phase-contrast imaging
  • Dark-field imaging
  • Interferometer
  • Biological imaging