Advertisement

Journal of the Korean Physical Society

, Volume 71, Issue 12, pp 1056–1063 | Cite as

Feasibility of dual-energy computed tomography in radiation therapy planning

  • Heesoon Sheen
  • Han-Back Shin
  • Sungkoo Cho
  • Junsang Cho
  • Youngyih HanEmail author
Article
  • 28 Downloads

Abstract

In this study, the noise level, effective atomic number (Z eff), accuracy of the computed tomography (CT) number, and the CT number to the relative electron density EDconversion curve were estimated for virtual monochromatic energy and polychromatic energy. These values were compared to the theoretically predicted values to investigate the feasibility of the use of dual-energy CT in routine radiation therapy planning. The accuracies of the parameters were within the range of acceptability. These results can serve as a stepping stone toward the routine use of dual-energy CT in radiotherapy planning.

Keywords

Spectral imaging Electron density Effective atomic number Effective energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Yagi et al., J. Appl. Clin. Med. Phys. 14, 173 (2013).CrossRefGoogle Scholar
  2. [2]
    D Thorwarth, Br. J. Radiol. 88, 1051 (2015).CrossRefGoogle Scholar
  3. [3]
    J. Hsieh, N. Chandra, S. Woloschek, B. Senzig, S. Aluri, T. Benson, X. Wu, D. Okerlund and B. Li, IEEE Nuclear Science Symposium Conference Record (2009), p. 3513.Google Scholar
  4. [4]
    W. Van Elmpt, G. Landry, M. Das and F. Verhaegen, Radiother. Oncol. 119, 137 (2016).CrossRefGoogle Scholar
  5. [5]
    Da Zhang, Xinhua Li and Bob Liu, Med. Phys. 38, 1178 (2011).CrossRefGoogle Scholar
  6. [6]
    Gammex Inc. 006328-00-04 MANUAL Gammex 467 User’s Guide Manual.Google Scholar
  7. [7]
    A. Mileto, K. Sofue and D. Marin, Eur. Radiol. 26, 3677 (2016).CrossRefGoogle Scholar
  8. [8]
    E. Fredenberg, M. Hemmendorff, B. Cederstrom, M. Aslund and M. Danielsson, Med. Phys. 37, 2017 (2010).CrossRefGoogle Scholar
  9. [9]
    M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar and D. S. Zucker, NIST Standard Reference Database 8 XGAM, http:// www.nist.gov/physlab/data/xcom/index.cfm (2005).Google Scholar
  10. [10]
    J. H. Hubbell, Natl. Bur. Stand. U.S. Spec. Publ. Number NSRDS-NBS 29 U.S. GPO, Washington, D.C. (1969).Google Scholar
  11. [11]
    M. Yang, Dissertations and Theses, http://digitalcommo ns.library.tmc.edu/utgsbs dissertations/167/ (2011).Google Scholar
  12. [12]
    Mitchell M. Goodsitt, Emmanuel G. Christodoulou and Sandra C. Larson, Med. Phys. 38, 222 (2011).Google Scholar
  13. [13]
    R. A. Rutherford, B. R. Pullan and I. Isherwood, Neuroradiology 11, 23 (1976).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  • Heesoon Sheen
    • 1
    • 2
  • Han-Back Shin
    • 3
  • Sungkoo Cho
    • 4
  • Junsang Cho
    • 4
  • Youngyih Han
    • 4
    Email author
  1. 1.Sungkyunkwan University School of MedicineSeoulKorea
  2. 2.GE Healthcare KoreaSeoulKorea
  3. 3.Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of MedicineCatholic University of KoreaSeoulKorea
  4. 4.Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea

Personalised recommendations