Advertisement

Journal of the Korean Physical Society

, Volume 70, Issue 11, pp 990–994 | Cite as

Phenomena of capillary rise through a cylindrical tube in arbitrary acceleration

  • Heetae KimEmail author
Article
  • 65 Downloads

Abstract

The capillary rise phenomenon of the water in a cylindrical tube is investigated in arbitrary acceleration. The surface roughness of water comes from thermal energy. The critical radius of a water drop between surface tension and volume force is shown as a function of acceleration. The governing equation for capillary rise in a cylindrical tube is shown in terms of the radius, surface tension, contact angle, viscosity, and acceleration. The maximum height of the water is inversely proportional to the diameter of the cylindrical tube. The motion of the water’s height is shown as a function of the diameter of the cylindrical tube. The height of the water’s rise is also shown as a function of time for different accelerations.

Keywords

Capillary rise Surface tension Negative pressure Microgravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. C. Hendricks and K. J. Baumeister, NASA TN D-5694 (1970).Google Scholar
  2. [2]
    R. C. Hendricks and K. J. Baumeister, Adv. Cryogen. Engin. 16, 455 (1971).Google Scholar
  3. [3]
    K. Penanen, M. Fukuto, R. K. Heilmann, I. F. Silvera and P. S. Persan, Phys. Rev. B 62, 9621 (2000).ADSCrossRefGoogle Scholar
  4. [4]
    H. Kim, K. Seo, B. Tabbert and G. A. Williams, J. Low Temp. Phys. 121, 621 (2000).CrossRefGoogle Scholar
  5. [5]
    H. Kim, K. Seo, B. Tabbert and G. A. Williams, Europhys. Lett. 58, 395 (2002).ADSCrossRefGoogle Scholar
  6. [6]
    X. Liu, X. Wang, Y. Liang and F. Zhou, J. Colloidal Interface Sci. 336, 743 (2009).CrossRefGoogle Scholar
  7. [7]
    H. Kim, J. Korean Phys. Soc. 49, 1335 (2006).Google Scholar
  8. [8]
    H. Kim, Y. H. Lee and H. Cho, J. Korean Phys. Soc. 58, 1628 (2011).CrossRefGoogle Scholar
  9. [9]
    W. Steckelmacher and M. W. Lucas, J. Phys. D: Appl. Phys. 16, 1453 (1983).ADSCrossRefGoogle Scholar
  10. [10]
    L. Fustoss and G. Toth, Vacuum 40, 43 (1990).CrossRefGoogle Scholar
  11. [11]
    M. Savard, C. Tremblay-Darveau and G. Gervais, Phys. Rev. Lett. 103, 104502 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    B. V. Zhmud, F. Tiberg and K. Hallstensson, J. Colloid Interface Sci. 228, 263 (2000).CrossRefGoogle Scholar
  13. [13]
    M. Stange, M. E. Dreyer and H. J. Rath, Phys. Fluid 15, 2587 (2003).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2017

Authors and Affiliations

  1. 1.Rare Isotope Science ProjectInstitute for Basic ScienceDaejeonKorea

Personalised recommendations