Skip to main content

Temporal resolution required for accurate evaluation of the interplay effect in spot scanning proton therapy

Abstract

In proton therapy, the spot scanning method is known to suffer from the interplay effect induced from the independent movements of the proton beam and the organs in the patient during the treatment. To study the interplay effect, several investigators have performed four-dimensional (4D) dose calculations with some limited temporal resolutions (4 or 10 phases per respiratory cycle) by using the 4D computed tomography (CT) images of the patient; however, the validity of the limited temporal resolutions has not been confirmed. The aim of the present study is to determine whether the previous temporal resolutions (4 or 10 phases per respiratory cycle) are really high enough for adequate study of the interplay effect in spot scanning proton therapy. For this study, a series of 4D dose calculations were performed with a virtual water phantom moving in the vertical direction during dose delivery. The dose distributions were calculated for different temporal resolutions (4, 10, 25, 50, and 100 phases per respiratory cycle), and the calculated dose distributions were compared with the reference dose distribution, which was calculated using an almost continuously-moving water phantom (i.e., 1000 phases per respiratory cycle). The results of the present study show that the temporal resolutions of 4 and 10 phases per respiratory cycle are not high enough for an accurate evaluation of the interplay effect for spot scanning proton therapy. The temporal resolution should be at least 14 and 17 phases per respiratory cycle for 10-mm and 20-mm movement amplitudes, respectively, even for rigid movement (i.e., without deformation) of the homogeneous water phantom considered in the present study. We believe that even higher temporal resolutions are needed for an accurate evaluation of the interplay effect in the human body, in which the organs are inhomogeneous and deform during movement.

This is a preview of subscription content, access via your institution.

References

  1. T. F. De Laney and H. M. Kooy, Proton and charged particle radiotherapy (Lippincott Williams & Wilkins, MD, 2008).

    Google Scholar 

  2. S. Dowdell. C. Grassberger, G. C. Sharp and H. Paganetti, Phys. Med. Biol. 58, 4137 (2013).

    Article  Google Scholar 

  3. H. Paganetti, Proton therapy physics (CRC Press, NY, 2011).

    Book  Google Scholar 

  4. I. Suramo, M. Paivansalo and V. Myllyla, Acta Radiol. 25, 129 (1984).

    Article  Google Scholar 

  5. S. C. Davies, A. L. Hill, R. B. Holmes, M. Halliwell and P. C. Jackson, British J. Radiol. 67, 1096 (1994).

    Article  Google Scholar 

  6. C. W. Stevens, R. F. Munden, K. M. Forster, J. F. Kelly, Z. Liao, G. Starkschall, S. Tucker and R. Komaki, Int. J. Radiat. Oncol. Biol. Phys. 51, 62 (2001).

    Article  Google Scholar 

  7. Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J. V. Lebesque and K. Miyasaka, Int. J. Radiat. Oncol. Biol. Phys. 53, 822 (2002).

    Article  Google Scholar 

  8. S. M. Zenklusen, E. Pedroni and D. Meer, Phys. Med. Biol. 55, 5103 (2010).

    Article  Google Scholar 

  9. N. Bassler, O. Jäkel, C. S. Søndergaard and J. B. Petersen, Acta. Oncol. 49, 1170 (2010).

    Article  Google Scholar 

  10. J. Seco, D. Robertson, A. Trofimov and H. Paganetti, Phys. Med. Biol. 54, N283 (2009).

    ADS  Article  Google Scholar 

  11. C. Bert, S. O. Grozinger and E. Rietzel, Phys. Med, Biol. 53, 2253 (2008).

    Article  Google Scholar 

  12. C. Grassberger, Int. J. Radiat. Oncol. Biol. Phys. 86, 380 (2013).

    Article  Google Scholar 

  13. H. Paganetti, H. Jiang, J. A. Adams, G. T. Chen and E. Rietzel, Int. J. Radiat. Oncol. Biol. Phys. 60, 942 (2004).

    Article  Google Scholar 

  14. T. R. Mackie, J. W. Scrimger and J. J. Battista, Med. Phys. 12, 188 (1985).

    Article  Google Scholar 

  15. W. Schlegel and T. Bortfeld, The use of computers in radiation therapy (Springer Science & Business Media, NY, 1987).

    Google Scholar 

  16. T. R. Mackie, A. F. Bielajew, D. W. O. Rogers and J. J. Battista, Phys. Med. Biol. 33, 1 (1988).

    Article  Google Scholar 

  17. S. Agostinelli et al., Nucl. Instrum. Meth. Phys. Res. A 506, 250 (2003).

    ADS  Article  Google Scholar 

  18. Y. Suh, S. Dieterich, B. Cho and P. J. Keall, Phys. Med. Biol. 53, 3623 (2008).

    Article  Google Scholar 

  19. P. J. Keall et al., Med. Phys. 33, 3874 (2006).

    Article  Google Scholar 

  20. D. S. Yang et al., Med. Phys. 38, 67 (2011).

    Article  Google Scholar 

  21. D. A. Low, W. B. Harms, S. Mutic, J. A. Purdy, Med. Phys. 25, 656 (1998).

    Article  Google Scholar 

  22. C. Knill, M. Snyder, J. T. Rakowski, L. Zhuang, M. Matuszak and J. Burmeister, Med. Phys. 43, 2476 (2016).

    Article  Google Scholar 

  23. H. Li, L. Dong, L. Zhang, J. N. Yang, M. T. Gillin and X. R. Zhu, Med. Phys. 38, 6730 (2011).

    Article  Google Scholar 

  24. C. Linda and S. Christina, Med. Phys. 40, 111715 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hyeong Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Han, M.C., Yeom, Y.S. et al. Temporal resolution required for accurate evaluation of the interplay effect in spot scanning proton therapy. Journal of the Korean Physical Society 70, 720–725 (2017). https://doi.org/10.3938/jkps.70.720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.720

Keywords

  • Proton therapy
  • Spot scanning
  • Interplay effect
  • Temporal resolution