Skip to main content
Log in

One-Dimensional model of hard rods with gravitational interactions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The study of one-dimensional hard rods with gravitational interactions was made by means of the isobaric and the canonical ensembles. The canonical partition function was obtained from the isobaric partition function by taking the inverse Laplace transform. The explicit closed forms for the canonical particle density and the higher-order molecular distribution functions were determined. The wall pressures, where the force exerted on the fluid by the walls, were obtained from both the partial derivative of the free energy with respect to the position of the walls and the contact value of the density determined from the one-particle density at the walls. The wall pressure implies that the hard rods with a gravitational interaction do not exhibit a phase transition. The partition function and the molecular distribution functions in the grand canonical ensemble are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Lieb and D. C. Mattis, Mathematical Physics in One Dimension (Academic, New York, 1966).

    Google Scholar 

  2. L. Rayleigh, Nature (Lond.) 45, 80 (1891)

    Article  ADS  Google Scholar 

  3. L. Tonks, Phys. Rev. 50, 955 (1936).

    Article  ADS  Google Scholar 

  4. H. Takahashi, Proc. Phys. Math. Soc. Jpn. 24, 60 (1942).

    Google Scholar 

  5. Z. W. Salsburg, J. G. Kirkwood and R. W. Zwanzig, J. Chem. Phys. 21, 1098 (1953)

    Article  ADS  Google Scholar 

  6. H. A. Leff and M. J. Coopersmith, J. Math. Phys. 8, 306 (1967).

    Article  ADS  Google Scholar 

  7. A. Robledo and R. S. Rowlinson, Mol. Phys. 58, 711 (1986).

    Article  ADS  Google Scholar 

  8. M. Bishop and M. A. Boonstra, Am. J. Phys. 51, 564 (1983).

    Article  ADS  Google Scholar 

  9. J. K. Percus, J. Stat. Phys. 15, 505 (1976).

    Article  ADS  Google Scholar 

  10. W. Kunkin, Phys. Chem. Liq. 1, 209 (1969)

    Article  Google Scholar 

  11. J. Ibsen, P. Cordero and R. Tabensky, J. Chem. Phys. 107, 5515 (1997)

    Article  ADS  Google Scholar 

  12. S. Velasco, F. L. Román, A. González and J. A. White, Eur. Phys. J. B 7, 421 (1999).

    Article  ADS  Google Scholar 

  13. J. Buschle, P. Maass and W. Dieterich, J. Stat. Phys. 99, 273 (2000); J. Phys. A: Math. Gen. 33, L41 (2000).

    Article  ADS  Google Scholar 

  14. B. Bakhti, M. Karbach, P. Maass and G. Müller, Phys. Rev. E 92, 042112 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Bakhti, M. Karbach, P. Maass, M. Mokim and G. Müller, Phys. Rev. E 89, 012137 (2014).

    Article  ADS  Google Scholar 

  16. H. T. Davis, J. Chem. Phys. 93, 4339 (1990).

    Article  ADS  Google Scholar 

  17. C. H. Cho, S. Singh and G. W. Robinson, Phys. Rev. Lett. 76, 1651 (1996)

    Article  ADS  Google Scholar 

  18. M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev and H. E. Stanley, Phys. Rev. E 60, 6714 (1999).

    Article  ADS  Google Scholar 

  19. J. M. Brader and R. Evans, Physica A 306, 287 (2002).

    Article  ADS  Google Scholar 

  20. M. Iwamatsu, Physica A 329, 14 (2003).

    Article  ADS  Google Scholar 

  21. M. Champion and A. Alastuey, J. Stat. Mech. P01031 (2015).

    Google Scholar 

  22. A. Lenard, J. Math. Phys. 2, 682 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Prager, Adv. Chem. Phys. 4, 201 (1962).

    Google Scholar 

  24. H. Kunz, Ann. Phys. 85, 303 (1974).

    Article  ADS  Google Scholar 

  25. F. Vericat and L. Blum, Physica A 145, 190 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Téllez and E. Trizac, Phys. Rev. E 92, 042134 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  27. K. G. Honnell and C. K. Hall, J. Stat. Phys. 61, 803 (1990).

    Article  ADS  Google Scholar 

  28. G. B. Arfken and H. J. Weber, Mathematical methods for physicists, 4th ed. (Academic Press, San Diego, 1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghi Ryang Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S., Shin, G.R. & Kim, SC. One-Dimensional model of hard rods with gravitational interactions. Journal of the Korean Physical Society 70, 673–681 (2017). https://doi.org/10.3938/jkps.70.673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.673

Keywords

Navigation