Skip to main content
Log in

Towards future circular colliders

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wenninger, LHC Experience & Commissioning, EuCARD-2 Workshop on “Beam Dynamics Meets Diagnostics,” Florence, 4–6 November 2015, http://indico.gsi.de/conferenceDisplay.py?confId=3509.

  2. European Strategy Session of Council, 30 May 2013, CERN-Council-S/106 (2013).

  3. S. Ritz et al., Building for Discovery, US P5 Report, May 2014.

    Google Scholar 

  4. A. Blondel, F. Zimmermann, A High Luminosity e+e - Collider in the LHC Tunnel to Study the Higgs Boson, 12 December 2012, arXiv:1112.2518 [hep-ex].

    Google Scholar 

  5. EuCARD LEP3 workshop, 18 June 2012, http://indico.cern.ch/event/193791; 2nd EuCARD LEP3 workshop 23 October 2012, http://indico.cern.ch/event/211018; 3rd EuCARD TLEP3 workshop, 10 January 2013, http://indico.cern.ch/event/222458; 4th EuCARD TLEP workshop, 4–5 April 2013, http://indico.cern.ch/event/240814.

  6. E. Todesco and F. Zimmermann (eds.), Proc. EuCARDAccNet- EuroLumi Workshop: The High-Energy Large Hadron Collider — HE-LHC10, Malta, 14–16 October 2010, CERN-2011-003, arXiv:1111.7188 [physics.acc-ph].

  7. J. A. Osborne and C. S. Waaijer, Pre-Feasability Assessment for an 80 km Tunnel Project at CERN, Contribution to the Update of the European Strategy for Particle Physics, No. 165, 27 July 2012, http://indico.cern.ch/event/175067/call-forabstracts/165/file/1.pdf.

    Google Scholar 

  8. Joint Snowmass-EuCARD/AccNet-HiLumi meeting ‘Frontier Capabilities for Hadron Colliders 2013’ a.k.a. EuCARD VHE-LHC Day, CERN, 21–22 February 2013, http://indico.cern.ch/event/223094.

  9. Future Circular Collider Study Kickoff Meeting, University of Geneva, 12–15 February 2014, http://indico.cern.ch/e/fcc-kickoff.

  10. J. Gao, The Strategy of Accelerator Based High Energy Physics of China, Rencontres du Vietnam, 10–17 August 2014.

  11. J. D. Jackson (ed.), Superconducting Super Collider Conceptual Design Report, SSC-SR-2020 (1986).

    Google Scholar 

  12. The VLHC Design Study Group, Design Study for a Staged Very Large Hadron Collider, Fermilab-TM-2149, SLAC-R-591 (2001).

  13. A. Apyan et al., CEPC-SPPC Preliminary Conceptual Design Report, IHEP-CEPC-DR-2015-01, IHEPAC- 2015-01 (2015).

    Google Scholar 

  14. Y. Zhang, H. Geng, Y. Wang and D. Wang, Status and Challenges of CEPC Accelerator Design, ICFA Beam Dynamics Newsletter No. 67, August 2015, http://www-bd.fnal.gov/icfabd.

  15. M. Benedikt et al., Proc. IPAC’15, Richmond (2015) p. 2173.

    Google Scholar 

  16. M. Benedikt, D. Schulte, F. Zimmermann, Phys. Rev. ST–Accel. Beams 18, 101002 (2015).

    Article  ADS  Google Scholar 

  17. W. Herr et al., Proc. IPAC’11, San Sebastian (2011) p. 1936.

    Google Scholar 

  18. I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg, L.- T. Wang, Luminosity Goals for a 100-TeV pp Collider, arXiv:submit/1238251 [hep-ph].

  19. D. Schulte, P. Lebrun et al., private communication (2015).

    Google Scholar 

  20. C. Cook et al., Proc. IPAC’15, Richmond (2015), p. 2079.

    Google Scholar 

  21. B. Goddard, W. Bartmann, W. Herr, P. Lebrun, and A. Milanese, Main changes to LHC layout for reuse as FCC-hh High Energy Booster, CERN-ACC-2015-030 (2015).

    Google Scholar 

  22. A. Milanese, B. Goddard, and M. Solfaroli Camillocci, Faster ramp of LHC for use as an FCC High Energy hadron Booster, CERN-ACC-2015-133 (2015).

    Google Scholar 

  23. W. Bartmann et al., Transfer and Injection Process, Review of the FCC-hh Injection Energy, CERN, 16 October 2015, http://indico.cern.ch/event/449449.

    Google Scholar 

  24. W. Chou, Proc. EPS-HEP 2015 (Vienna, July 2015).

  25. P. Lebrun and L. Tavian. Proc. 25th International Cryogenic Conference & International Cryogenic Materials Conference, Twente U., Enschede (2014).

    Google Scholar 

  26. R. Kersevan, Arc vacuum design, absorbers & shielding, FCC Week 2015, Washington, http://indico.cern.ch/event/340703/session/83/contribution/62.

  27. R. Kersevan, Beam Screen Design and Cooling, Vacuum Aspects, Synchrotron Radiation, Review of the FCC-hh Injection Energy, CERN, 16 October 2015, http://indico.cern.ch/event/449449.

    Google Scholar 

  28. O. Boine-Frankenheim, FCC-hh impedances and instabilities, Review of the FCC-hh Injection Energy, CERN, 16 October 2015, http://indico.cern.ch/event/449449.

    Google Scholar 

  29. V. Shiltsev, Electron Lenses for Super-Colliders, (Springer Verlag, Berlin, Heidelberg, 2016).

    Book  Google Scholar 

  30. M. Bicer et al., JHEP 01, 164 (2014).

    Article  ADS  Google Scholar 

  31. A. Blondel, Possibilities and conditions for very high precision electroweak measurements at TLEP3, 3rd Eu- CARD TLEP3 workshop, CERN, 10 January 2013, http://indico.cern.ch/event/222458.

    Google Scholar 

  32. A. Bogomyagkov, E. Levichev and D. Shatilov. Phys. Rev. ST Accel. Beams 17, 041004 (2014).

  33. K. Ohmi and F. Zimmermann, Proc. IPAC’14 (Dresden, 2014), p. 3766.

    Google Scholar 

  34. D. Shatilov, Proc. ICFA HF2014 (Beijing, 2014).

    Google Scholar 

  35. K. Oide, Optics Overview, Review of the FCC-ee Optics and Beam Dynamics (CERN, 14 October 2015), http://indico.cern.ch/event/448985.

    Google Scholar 

  36. A. Bogomyagkov, Crab Waist Interaction Region Designs and Solenoid Compensation, Review of the FCC-ee Optics and Beam Dynamics, (CERN, 14 October 2015), http://indico.cern.ch/event/448985.

    Google Scholar 

  37. M. Aiba, A. Saa Hernandez, and F. Zimmermann, Topup injection for FCC-ee, CERN-ACC-2015-065 (2015).

    Google Scholar 

  38. M. Aiba and A. Saa Hernandez, Top-up Injection, Review of the FCC-ee Optics and Beam Dynamics (CERN, 14 October 2015), http://indico.cern.ch/event/448985.

    Google Scholar 

  39. A. Blondel, private suggestion following FCCWeek 2015.

    Google Scholar 

  40. J. Abelleira et al., J. Phys. G 39, 075001 (2012).

    Article  ADS  Google Scholar 

  41. D. Schoerling et al., Proc. EPS-HEP 2015 (Vienna, July 2015).

    Google Scholar 

  42. D. Tommasini, private communication (2015).

    Google Scholar 

  43. A. Devred and A. Ballerino, private communication (2015).

    Google Scholar 

  44. A. V. Zlobin et al., IEEE Trans. Appl. Supercond. 23, 4000904 (2013)

    Article  Google Scholar 

  45. G. L. Sabbi et al., IEEE Trans. Appl. Supercond. 25, 4001407 (2015).

    Article  Google Scholar 

  46. L. Brouwer, S. Caspi, S. Prestemon, IEEE Trans. Appl. Supercond. 25, 4000404 (2015).

    Article  Google Scholar 

  47. A new record for RMC test magnet at CERN (CERN Courier, 13 November 2015), http://cerncourier.com/cws/article/cern/63141.

  48. A. Butterworth, Proc. EPS-HEP 2015 (Vienna, July 2015).

    Google Scholar 

  49. I. Syratchev, Review of Efficient RF Sources, 2nd Eu- CARD2 Annual Meeting (Barcelona, 22 April 2015).

    Google Scholar 

  50. Korean members of the FCC collaboration: Gangneung-Wonju U., KAIST, KIAS, and Korea U. Sejong Campus; Korean institutes and enterprises in the process of becoming FCC members: Korea U. Seoul Campus, and KAT.

  51. Updated information is available on the FCC web site, http://cern.ch/fcc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedikt, M., Zimmermann, F. Towards future circular colliders. Journal of the Korean Physical Society 69, 893–902 (2016). https://doi.org/10.3938/jkps.69.893

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.893

Keywords

Navigation