Skip to main content
Log in

Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam’s direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. T. Chu et al., IAEA Technical Documents (2006).

    Google Scholar 

  2. IAEA Technical Report Series No. 461.

  3. T. Kamada et al., Lancet. 16, 2 (2015).

    Article  Google Scholar 

  4. M. Joiner and A. Kogel, Basic Clinical Radiobiology (CRC Press, UK, 2009).

    Google Scholar 

  5. T. Kanai, Y. Furusawa, K. Fukutsu, H. Itsukaichi, K. E. Kasai and H. Ohara, Radiat. Res. 147, 78 (1999).

    Article  Google Scholar 

  6. T. Kanai et al., Int. J. Radiat. Oncol. Biol. Phys. 44, 201 (1999).

    Article  ADS  Google Scholar 

  7. A. M. Kellerer and H. H. Rossi. Radiat. Res. 75, 471 (1978).

    Article  Google Scholar 

  8. M. Scholz, A. Kellerer, W. K. Weyrather and G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997).

    Article  Google Scholar 

  9. T. Elsasser and M. Scholz, Radiat. Res. 167, 319 (2007).

    Article  Google Scholar 

  10. O. Steinstrater, R. Grun, U. Scholz, T. Friedrich, M. Durante and M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 84, 854 (2012).

    Article  Google Scholar 

  11. R. Rossy, Eur. Phys. J. Plus. 126, 78 (2011).

    Article  Google Scholar 

  12. R. B. Hawkins, Radiat. Res. 140, 366 (1994).

    Article  Google Scholar 

  13. R. B. Hawkins, Radiat. Res. 160, 61 (2003).

    Article  ADS  Google Scholar 

  14. Y. Kase, T. Kanai, Y. Matsumoto, Y. Furusawa, H. Okamoto, T. Asaba, M. Sakama and H. Shinoda, Radiat. Res. 166, 629 (2006).

    Article  Google Scholar 

  15. T. Sato, Y. Kase, R. Watanabe, K. Niita and L. Sihver, Radiat. Res. 171, 107 (2009).

    Article  Google Scholar 

  16. T. Inaniwa, T. Furukawa, Y. Kase, N. Matsufuji, T. Toshito, Y. Matsumoto, Y. Furusawa and K. Noda, Phys. Med. Bio. 55, 6721 (2010).

    Article  Google Scholar 

  17. D. Dabli, G. Montarou, M. Beuve and C. R. Lafrasse, RBE modelization: Present Status and Future Prospects (2011), p. 22.

    Google Scholar 

  18. C. H. Kim et al., J. Korean Phys. Soc. 45, 1000 (2014).

    Google Scholar 

  19. C. H. Kim et al., J. Korean Phys. Soc. 64, 1308 (2014).

    Article  ADS  Google Scholar 

  20. S. Giordanengo et al., NIM A 698, 202 (2013).

    Article  ADS  Google Scholar 

  21. S. Agostinelli et al., NIM A 506, 250 (2003).

    Article  ADS  Google Scholar 

  22. Geant4 Hadronic Working Group, Improvements in the Geant4 Hadronic Physics, CHEP 2010.

  23. G. Cirrone et al., Prog. Nucl. Sci. 2, 207 (2011).

    Article  Google Scholar 

  24. M. Sakama et al., Phys. Med. Bio. 57, 6615 (2012).

    Article  Google Scholar 

  25. ICRU Report 60.

  26. F. Romano, G. A. P. Cirrone, G. Cuttone, F. D. Rosa, S. E. Mazzaglia, I. Petrovic, A. R. Fira and A. Varisano, Phys. Med. Bio. 59, 2863 (2014).

    Article  Google Scholar 

  27. MINUIT, A physics analysis tool for function minimization, http://www.cern.ch/minuit.

  28. ROOT, An object oriented framework for large scale data analys. http://root.cern.ch.

  29. Y. Furusawa, K. Fukutsu, M. Aoki, H. Itsukaichi, K. E. Kasai, H. Ohara, F. Yatagai, T. Kanai and K. Ando, Radiat. Res. 154, 485 (2000).

    Article  Google Scholar 

  30. T. Inaniwa, M. Suzuki, T. Frukawa, Y. Kase, N. Kanematsu, T. Shirai and R. B. Hawkins, Radiat. Res. 180, 44 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Gyun Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, I., Yoo, S., Cho, S. et al. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations. Journal of the Korean Physical Society 69, 868–874 (2016). https://doi.org/10.3938/jkps.69.868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.868

PACS numbers

Keywords

Navigation