Skip to main content
Log in

Fabrication of a customized bone scaffold using a homemade medical 3D printer for comminuted fractures

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The purpose of this study was to show a 3D printed reconstruction model of a bone destroyed by a comminuted fracture. After a thoracic limb of a cow with a comminuted fracture was scanned by using computed tomography, a scaffold was designed by using a 3D modeling tool for its reconstruction and fabricated by using a homemade medical 3D printer. The homemade medical 3D printer was designed for medical use. In order to reconstruct the geometry of the destroyed bone, we use the geometry of a similar section (reference geometry) of normal bone in the 3D modeling process. The missing part between the destroyed ridge and the reference geometry was filled with an effective space by using a manual interpolation. Inexpensive materials and free software were used to construct the medical 3D printer system. The fabrication of the scaffold progressed according to the design of reconstructed bone by using this medical 3D printer. The material of the scaffold was biodegradable material, and could be transplanted into the human body. The fabricated scaffold was correctly inserted into the fractured bone in place of the destroyed portion, with good agreement. According to physical stress test results, the performance of printing resolution was 0.1 mm. The average geometrical error of the scaffold was below 0.3 mm. The reconstructed bone by using the fabricated scaffold was able to support the weight of the human body. No process used to obtain the result was complex or required many resources. The methods and results in this study show several possible clinical applications in fields such as orthopedics or oncology without a need to purchase high-price instruments for 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Businger, P. R. Thomas and C. Sommer, Injury 41, 583 (2010).

    Article  Google Scholar 

  2. S. Siebenlist et al., Injury 41, 1306 (2010).

    Article  Google Scholar 

  3. T. Shimizu et al., Injury 43, 940 (2012).

    Article  Google Scholar 

  4. J. A. Disegi and L. Eschbach, Injury 31, D2 (2000).

    Article  Google Scholar 

  5. S. V. Murphy, A. Atala, Nat. Biotechnol. 32, 773 (2014).

    Article  Google Scholar 

  6. S. Choi, H. Kang and H. Bang, Injury 45, 1280 (2014).

    Article  Google Scholar 

  7. E. F. Morgan et al., Bone 44, 335 (2009).

    Article  Google Scholar 

  8. K. R. O’Neill et al., Bone 50, 1357 (2012).

    Article  Google Scholar 

  9. B. Liu et al., Comput. Med. Imaging Graph. 38, 233 (2014).

    Article  Google Scholar 

  10. C. X. F. Lam et al., Mater. Sci. Eng. C Mater. Biol. Appl. 20, 49 (2002).

    Article  Google Scholar 

  11. M. Lee, J. C. Dunn and B. M. Wu, Biomaterials 26, 4281 (2005).

    Article  Google Scholar 

  12. E. Jeandupeux, V. Lobjois and B. Ducommun, Biochem. Biophys. Res. Commun. 463, 1141 (2015).

    Article  Google Scholar 

  13. H. J. Lee et al., Injury 44, 465 (2013).

    Article  Google Scholar 

  14. P. Lichte et al., Injury 42, 569 (2011).

    Article  Google Scholar 

  15. L. M. Mathieu et al., Biomaterials 27, 905 (2006).

    Article  Google Scholar 

  16. R. Olszewski, P. Szymor and M. Kozakiewicz, J. Craniomaxillofac. Surg. 42, 1847 (2014).

    Article  Google Scholar 

  17. A. L. Jardini et al., J. Craniomaxillofac. Surg. 42, 1877 (2014).

    Article  Google Scholar 

  18. A. Butscher et al., Acta. Biomater. 7, 907 (2011).

    Article  Google Scholar 

  19. Q. Zhang et al., Sci. Rep. 5, 8936 (2015).

    Article  ADS  Google Scholar 

  20. L. Ciocca et al., Clin. Oral. Implants Res. 22, 850 (2011).

    Article  Google Scholar 

  21. S. J. Hollister, Nat. mater. 4, 518 (2005).

    Article  ADS  Google Scholar 

  22. Y. He, G. H. Xue and J. Z. Fu, Sci. Rep. 4, 6973 (2014).

    Article  ADS  Google Scholar 

  23. D. Palousek, J. Rosicky and D. Koutny, Prosthet. Orthot. Int. 38, 171 (2013).

    Article  Google Scholar 

  24. L. Horváth et al., Sci. Rep. 5, 7974 (2015).

    Article  Google Scholar 

  25. A. I. Birkhold et al., Bone 66, 15 (2014).

    Article  Google Scholar 

  26. K. Iwata et al., Bone 64, 183 (2014).

    Article  Google Scholar 

  27. S. Rehman, T.A. Damron and C. Geel, Injury 31, 783 (2000).

    Article  Google Scholar 

  28. K. H. Yang, Injury 36, 75 (2005).

    Article  Google Scholar 

  29. R. N. Thompson, C. L. Armstrong and G. Heyburn, Bone 61, 44 (2014).

    Article  Google Scholar 

  30. J. Ho-Seung et al., Arch. Orthop. Trauma. Surg. 134, 1551 (2014).

    Article  Google Scholar 

  31. H. Huajun et al., Australas. Phys. Eng. Sci. Med. 38, 109 (2015).

    Article  Google Scholar 

  32. E. Maravelakis et al., J. Med. Eng. Technol. 32, 115 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Suk Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, DK., Jung, JY., Shin, HB. et al. Fabrication of a customized bone scaffold using a homemade medical 3D printer for comminuted fractures. Journal of the Korean Physical Society 69, 852–857 (2016). https://doi.org/10.3938/jkps.69.852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.852

PACS numbers

Keywords

Navigation