Skip to main content
Log in

Screw-dislocation-driven growth of ZnO nanotubes seeded by self-perpetuating spirals during hydrothermal processing

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the effects of precursor concentration on the characteristics of ZnO nanostructures during hydrothermal processing. Self-perpetuating surface spirals are fabricated at concentrations of 0.25 and 0.5 M, with samples grown at concentrations of 0.05 and 0.125 M exhibiting ZnO nanorods. This can be explained by a change in the growth mode from an initial columnar growth to a screw-dislocation-driven growth with decreased supersaturation. The screw dislocations nucleate at the V-shaped valleys of the columnar boundaries during the intermediate stage. We demonstrate that continuous screw-dislocation-driven growth leads to the formation of ZnO nanotubes having Burger’s vectors of 1.45 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Li, X. Huang, J. Liu, Y. Li, X. Ji and G. Li, Mater. Lett. 61, 4362 (2007).

    Article  Google Scholar 

  2. Z. L. Wang, X. Y. Kong and J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003).

    Article  ADS  Google Scholar 

  3. B. Liu and H. C. Zeng, Nano Res. 2, 201 (2009).

    Article  Google Scholar 

  4. A. Gurlo, Nanoscale 3, 154 (2011).

    Article  ADS  Google Scholar 

  5. Y. Yan, X. Wang, H. Chen, L. Zhou, X. Cao and J. Zhang, J. Phys. D: Appl. Phys. 46, 155304 (2013).

    Article  ADS  Google Scholar 

  6. M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt and S. Jin, Science 320, 1060 (2008).

    Article  ADS  Google Scholar 

  7. J. Zhu, H. Peng, A. F. Marshall, D. M. Barnett, W. D. Nix and Y. Cui, Nature Nanotech. 3, 477 (2008).

    Article  ADS  Google Scholar 

  8. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009).

    Article  Google Scholar 

  9. N. Wang, Y. Cai and R. Q. Zhang, Mater. Sci. Eng. R 60, 1 (2008).

    Article  Google Scholar 

  10. J. H. Kim, M. S. Lee and H. C. Kang, J. Korean Phys. Soc. 66, 229 (2015).

    Article  ADS  Google Scholar 

  11. J. E. Boercker, J. B. Schmidt and E. S. Aydil, Crys. Growth Des. 9, 2783 (2009).

    Article  Google Scholar 

  12. I. J. No, S. Lee, S. H. Kim, J. W. Cho and P. K. Shin, Jpn. J. Appl. Phys. 52, 025003 (2013).

    Article  ADS  Google Scholar 

  13. S. H. Lee, J. S. Lee, W. B. Ko, J. I. Sohn, S. N. Cha, J. M. Kim, Y. J. Park and J. P. Hong, Appl. Phys. Exp. 5, 095002 (2012).

    Article  ADS  Google Scholar 

  14. E. Akatyeva and T. Dumitrica, Phys. Rev. Lett. 109, 035501 (2012).

    Article  ADS  Google Scholar 

  15. H.-Y. Hsiao, C.-M. Liu, H.-W. Lin, T.-C. Liu, C.-L. Lu, Y.-S. Huang, C. Chen and K. N. Tu, Science 336, 1007 (2012).

    Article  ADS  Google Scholar 

  16. F. Meng, S. A. Morin, A. Forticaux and S. Jin, Accounts Chem. Res. 46, 1616 (2013).

    Article  Google Scholar 

  17. S. A. Morin, and S. Jin, Nano Lett. 10, 3459 (2010).

    Article  ADS  Google Scholar 

  18. S. A. Morin, M. J. Bierman, J. Tong and S. Jin, Science 328, 476 (2010).

    Article  ADS  Google Scholar 

  19. J. Liu, Q. Huang, Y. Qian, Z. Huang, F. Lai, L. Lin, M. Guo, W. Zheng and Y. Qu, Cryst. Growth Des. 16, 2052 (2016).

    Article  Google Scholar 

  20. J. Dai, J. Lu, F. Wang, J. Guo, N. Gu and C. Xu, ACS Appl. Mater. Interfaces 7, 12655 (2015).

    Article  Google Scholar 

  21. A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov and A. V. Fedorov, Nano. Lett. 15, 1710 (2015).

    Article  ADS  Google Scholar 

  22. F. Meng, M. Estruga, A. Forticaux, S. A. Morin, Q. Wu, Z. Hu and S. Jin, ACS Nano 7, 11369 (2013).

    Article  Google Scholar 

  23. X.-H. Zhang et al., Sci. Rep. 5, 10087 (2015).

    Article  ADS  Google Scholar 

  24. A. Zhuang, J.-J. Li, Y.-C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang and J. Zeng, Angew. Chem. Int. Ed. 53, 6425 (2014).

    Article  Google Scholar 

  25. W. K. Burton, N. Cabrera and C. Frank, Philos. Trans. R. Soc. London Ser. A 243, 299 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  26. G.-R. Li, X.-H. Lu, D.-L. Qu, C.-Z. Yao, F.-l. Zheng, Q. Bu, C.-R. Dawa and Y.-X. Tong, J. Phys. Chem. C 111, 6678 (2007).

    Article  Google Scholar 

  27. Y.-C. Tu, S.-J. Wang, T.-H. Lin, C.-H. Hung, T.-C. Tsai, R.-W. Wu, K.-M. Uang and T.-M. Chen, Intern. J. of Photoenergy 2015, 261372 (2015).

    Google Scholar 

  28. Y. I. Jeong, C. M. Shin, J. H. Heo, H. Ryu, W. J. Lee, C. S. Son, and H. Choi, J. Korean Phys. Soc. 59, 2338 (2011).

    Article  Google Scholar 

  29. Y. Im, S. Kang, B. S. Kwak, K. S. Park, T. W. Cho, J.-S. Lee and M. Kang, Korean J. Chem. Eng. 33, 1447 (2016).

    Article  Google Scholar 

  30. R. H. Zhang, E. B. Slamovich and C. A. Handwerker, Nanotechnology 24, 195603 (2013).

    Article  ADS  Google Scholar 

  31. A. Forticaux, L. Dang, H. Liang and S. Jin, Nano Lett. 15, 3403 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyon Chol Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kang, H.C. Screw-dislocation-driven growth of ZnO nanotubes seeded by self-perpetuating spirals during hydrothermal processing. Journal of the Korean Physical Society 69, 778–782 (2016). https://doi.org/10.3938/jkps.69.778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.778

PACS numbers

Keywords

Navigation