Skip to main content
Log in

Formation properties of an InGaN active layer for high-efficiency InGaN/GaN multi-quantum-well-nanowire light-emitting diodes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nitride-based nanowires (NWs) have several advantages, such as flexibility in choosing a substrate, easy fabrication, large light-emitting area, no internal electric field, enhanced light extraction, and reduced defects by strain relief, that are useful for enhancing the efficiency of light-emitting diodes (LEDs). Here, we report how crucial the formation properties of the InGaN active layer are for enhancing the efficiency of core-shell InGaN/GaN multi-quantum-well (MQW)-NW LEDs that are selectively grown on oxide templates with perfectly-circular hole patterns. The nanostructures are analyzed for two types of LEDs, one containing defect-free MQW active layer and the other containing MQW layer with defects by using high-resolution transmission electron microscopy. The I-V curve of the defect-free LED shows a rectifying behavior with an on/off ratio of ~109, typical of a diode, and the off-state leakage current of the LED with defects is much larger than that of the defect-free LED, resulting in brighter electroluminescence from the latter device. These results suggest that well-defined nonpolar InGaN/GaN MQW-NWs can be utilized for the realization of high-performance LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Arif, Y. K. Ee and N. Tansu, Appl. Phys. Lett. 91, 091110 (2007).

    Article  ADS  Google Scholar 

  2. L. Y. Zhang, K. Cheng, H. Liang, R. Lieten, M. Leys and G. Borghs, Jpn. J. Appl. Phys. 51, 030207 (2012).

    Article  ADS  Google Scholar 

  3. A. Krost and A. Dadgar, Phys. Status Solidi A 194, 361 (2002).

    Article  ADS  Google Scholar 

  4. A. R. Boyd, S. Degroote, M. Leys, F. Schulte, O. Rockenfeller, M. Luenenbuerger, M. Germain, J. Kaeppeler and M. Heuken, Phys. Status Solidi C 6, 1045 (2009).

    Article  ADS  Google Scholar 

  5. K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, M. Saito, K. Fujito, J. S. Speck, S. Nakamura and S. P. DenBaars, Phys. Status Solidi 1, 125 (2007).

    Google Scholar 

  6. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater. 15, 353 (2003).

    Article  Google Scholar 

  7. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, 74 (1996).

    Article  ADS  Google Scholar 

  8. J. Zhang, J. Yang, G. Simin, M. Shatalov, M. Asif Khan, M. S. Shur and R. Gaska Appl. Phys. Lett. 77, 2668 (2000).

    Article  ADS  Google Scholar 

  9. X. Guo, Y. L. Li and E. F. Schubert, Appl. Phys. Lett. 79, 1936 (2001).

    Article  ADS  Google Scholar 

  10. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Mu˜noz, U. Jahn and K. Ploog, Phys. Revi. B. 62, 16826 (2000).

    Article  ADS  Google Scholar 

  11. C. Thelander et al., Mater. Today 9, 28 (2006).

    Article  Google Scholar 

  12. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, Nano Lett. 8, 4191 (2008).

    Article  ADS  Google Scholar 

  13. E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).

    Article  ADS  Google Scholar 

  14. Z. Fan et al., Nat. Mater. 8, 648 (2009).

    Article  ADS  Google Scholar 

  15. J. S. Cabalu, C. Thomidis, T. D. Moustakas, S. Riyopoulos, L. Zhou and D. J. Smith, J. Appl. Phys. 99, 064904 (2006).

    Article  ADS  Google Scholar 

  16. P. Frajtag, A. M. Hosalli, G. K. Bradshaw, N. Nepal, N. A. El-Masry and S. M. Bedair, Appl. Phys. Lett. 98, 143104 (2011).

    Article  ADS  Google Scholar 

  17. N. A. Fichtenbaum et al., Jpn J. Appl. Phys. 46, 230 (2007).

    Article  ADS  Google Scholar 

  18. E. D. Le Boulbar, I. Gîrgel, C. J. Lewins, P. R. Edwards, R. W. Martin, A. Šatka, D. W. E. Allsopp and P. A. Shields, J. Appl. Phys. 114, 094302 (2013).

    Article  ADS  Google Scholar 

  19. S. Alberta et al., J. Crys. Grow. 392, 5 (2014).

    Article  ADS  Google Scholar 

  20. B. Alloing, S. Vézian, O. Tottereau, P. Vennéguès, E. Beraudo and J. Zuniga-Pérez, Appl. Phys. Lett. 98, 011914 (2011).

    Article  ADS  Google Scholar 

  21. Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park and G. C. Yi, Adv. Mater. 23, 3284 (2011).

    Article  Google Scholar 

  22. A. Lundskog, U. Forsbeg, P. O. Holtz and E. Janzen, Cryst. Growth Des. 12, 5491 (2012).

    Article  Google Scholar 

  23. Q. Li and G. T. Wang, Appl. Phys. Lett. 97, 181107 (2010).

    Article  ADS  Google Scholar 

  24. S. Xu, Y. Hao, J. Zhang, T. Jiang, L. Yang, X. Lu and Z. Lin, Nano Lett. 13, 3654 (2013).

    Article  ADS  Google Scholar 

  25. B. H. Kong, Q. Sunb, J. Hanb, I. H. Lee and H. K Cho, Appl. Surf. Sci. 258, 2522 (2012).

    Article  ADS  Google Scholar 

  26. A. Laubsch et al., Phys. Status Solidi C 6, 913 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.W., Lee, B. & Choi, SH. Formation properties of an InGaN active layer for high-efficiency InGaN/GaN multi-quantum-well-nanowire light-emitting diodes. Journal of the Korean Physical Society 69, 772–777 (2016). https://doi.org/10.3938/jkps.69.772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.772

PACS numbers

Keywords

Navigation