Skip to main content
Log in

New photodisintegration model of GEANT4 for the np reaction with a dibaryon effective field theory

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We develop a new hadronic model for GEANT4 that is specialized for the disintegration of the deuteron by photons, np. For the description of two-nucleon interactions, we employ a pionless effective field theory with dibaryon fields (dEFT). We apply the new model of GEANT4 (G4dEFT) to the calculations of the total and the differential cross sections in np and compare the results with empirical data. As an application of the new model, we calculate the neutron yield from the γ+CD2 process. G4dEFT predicts peaks for the neutron yield, but the existing model of GEANT4 does not show such behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Kaplan, M. J. Savage and M. B. Wise, Nucl. Phys. B 478, 629 (1996).

    Article  ADS  Google Scholar 

  2. J. W. Chen, G. Rupak and M. J. Savage, Nucl. Phys. A 653, 386 (1999).

    Article  ADS  Google Scholar 

  3. J. W. Chen, G. Rupak and M. J. Savage, Phys. Lett. B 464, 1 (1999).

    Article  ADS  Google Scholar 

  4. J. W. Chen and M. J. Savage, Phys. Rev. C 60, 065205 (1999).

    Article  ADS  Google Scholar 

  5. G. Rupak, Nucl. Phys. A 678, 405 (2000).

    Article  ADS  Google Scholar 

  6. S. R. Beane and M. J. Savage, Nucl. Phys. A 694, 511 (2001).

    Article  ADS  Google Scholar 

  7. H. W. Griesshammer and G. Rupak, Phys. Lett. B 529, 57 (2002).

    Article  ADS  Google Scholar 

  8. D. B. Kaplan, Nucl. Phys. B 494, 471 (1997).

    Article  ADS  Google Scholar 

  9. S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  10. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).

    Article  ADS  Google Scholar 

  11. J. W. Shin and T.-S. Park, Nucl. Instrum. Meth. B 342, 194 (2015).

    Article  ADS  Google Scholar 

  12. P. F. Bedaque and U. van Kolck, Phys. Lett. B 428, 221 (1998).

    Article  ADS  Google Scholar 

  13. U. van Kolck, Nucl. Phys. A 645, 273 (1999).

    Article  ADS  Google Scholar 

  14. S. Ando and C. H. Hyun, Phys. Rev. C 72, 014008 (2005).

    Article  ADS  Google Scholar 

  15. S. Ando, R. H. Cyburt, S. W. Hong and C. H. Hyun, Phys. Rev. C 74, 025809 (2006).

    Article  ADS  Google Scholar 

  16. S. Ando, J. W. Shin, C. H. Hyun and S. W. Hong, Phys. Rev. C 76, 064001 (2007).

    Article  ADS  Google Scholar 

  17. S. Ando, J. W. Shin, C. H. Hyun, S. W. Hong and K. Kubodera, Phys. Lett. B 668, 187 (2008).

    Article  ADS  Google Scholar 

  18. J. W. Shin, S. Ando and C. H. Hyun, Phys. Rev. C 81, 055501 (2010).

    Article  ADS  Google Scholar 

  19. J. W. Shin, S.-I. Ando, C. H. Hyun and S. W. Hong, Few-Body Syst. 54, 359 (2013).

    Article  ADS  Google Scholar 

  20. J. W. Shin, C. H. Hyun, S.-I. Ando and S. W. Hong, Phys. Rev. C 88, 035501 (2013).

    Article  ADS  Google Scholar 

  21. S. I. Bak, T. S. Park, S. W. Hong, J. W. Shin and I. S. Hahn, J. Korean Phys. Soc. 59, 2071 (2011).

    Article  Google Scholar 

  22. J. W. Shin, S. W. Hong, S.-I. Bak, D. Y. Kim and C. Y. Kim, J. Korean Phys. Soc. 65, 591 (2014).

    Article  ADS  Google Scholar 

  23. M. U. Bug, E. Gargioni, S. Guatelli, S. Incerti, H. Rabus, R. Schulte and A. B. Rosenfeld, Eur. Phys. J. D 60, 85 (2010).

    Article  ADS  Google Scholar 

  24. J. W. Shin, S. W. Hong, C. I. Lee and T. S. Suh, J. Korean Phys. Soc. 59, 12 (2011).

    Article  Google Scholar 

  25. C. I. Lee, J. W. Shin, S.-C. Yoon, T. S. Suh, S.-W. Hong, K. J. Min, S. D. Lee, S. M. Chung and J.-Y. Jung, J. Korean Phys. Soc. 66, 1308 (2015).

    Article  ADS  Google Scholar 

  26. J. K. Park, S. Kwon, S. W. Lee, J. T. Kim, J.-S. Chai, J. W. Shin and S.-W. Hong, J. Korean Phys. Soc. 58, 1511 (2011).

    Article  Google Scholar 

  27. J.W. Shin, T.-S. Park, S. W. Hong, J. K. Park, J. T. Kim and J.-S. Chai, J. Korean Phys. Soc. 59, 2022 (2011).

    Article  Google Scholar 

  28. J. W. Shin et al., Nucl. Instrum. Meth. A 797, 304 (2015).

    Article  ADS  Google Scholar 

  29. S. Hurtado, M. García-León and R. García-Tenorio, Nucl. Instrum. Meth. A 518, 764 (2004).

    Article  ADS  Google Scholar 

  30. K. Banerjee et al., Nucl. Instrum. Meth. A 608, 440 (2009).

    Article  ADS  Google Scholar 

  31. P. M. Joshirao, J. W. Shin, C. K. Vyas, A. D. Kulkarni, H. Kim, T. Kim, S.-W. Hong and V. K. Manchanda, Appl. Radiat. Isot. 81, 184 (2013).

    Article  Google Scholar 

  32. J. P. Wellisch, M. Kossov and P. Degtyarenko, arXiv:nucl-th/0306012.

  33. A. Heikkinen, N. Stepanov and J. P. Wellisch, arXiv:nucl-th/0306008.

  34. J. E. E. Baglin, R. W. Carr, E. J. Bentz and C.-P. Wu, Nucl. Phys. A 201, 593 (1973).

    Article  ADS  Google Scholar 

  35. D. M. Skopik, Y. M. Shin, M. C. Phenneger and J. J. Murphy, Phys. Rev. C 9, 531 (1974).

    Article  ADS  Google Scholar 

  36. J. Ahrens, H. B. Eppler, H. Gimm, M. Kröning, P. Riehn, H. Wäffler, A. Zieger and B. Ziegler, Phys. Lett. B 52, 49 (1974).

    Article  ADS  Google Scholar 

  37. Y. Birenbaum, S. Kahane and R. Moreh, Phys. Rev. C 32, 1825 (1985).

    Article  ADS  Google Scholar 

  38. R. Bernabei et al., Phys. Rev. Let. 57, 1542 (1986).

    Article  ADS  Google Scholar 

  39. R. Bernabei et al., Phys. Rev. C 38, 1990 (1988).

    Article  ADS  Google Scholar 

  40. R. Moreh, T. J. Kennett and W. V. Prestwich, Phys. Rev. C 39, 1247 (1989).

    Article  ADS  Google Scholar 

  41. K. Y. Hara et al., Phys. Rev. D 68, 072001 (2003).

    Article  ADS  Google Scholar 

  42. T. Shima, S. Naito, Y. Nagai, T. Baba, K. Tamura, T. Takahashi, T. Kii, H. Ohgaki and H. Toyokawa, Phys. Rev. C 72, 044004 (2005).

    Article  ADS  Google Scholar 

  43. http://www.nndc.bnl.gov/csewg/.

  44. http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-pd-2004. html.

  45. https://www-nds.iaea.org/exfor/exfor.htm.

  46. M. P. De Pascale et al., Phys. Rev. C 32, 1830 (1985).

    Article  ADS  Google Scholar 

  47. I. Akkurt, Chin. J. Phys. 41, 111 (2003).

    Google Scholar 

  48. A. De Graeve, A. Zieger, R. Van De Vyver, C. Van Den Abeele, H. Ferdinande, L. Van Hoorebeke, D. Ryckbosch, F. De Smet and B. Ziegler, Nucl. Phys. A 530, 420 (1991).

    Article  ADS  Google Scholar 

  49. K. E. Stephenson, R. J. Holt, R. D. Mckeown and J. R. Specht, Phys. Rev. C 35, 2023 (1987).

    Article  ADS  Google Scholar 

  50. Y. Birenbaum, Z. Berant, A. Wolf, S. Kahane and R. Moreh, Phy. Rev. Lett. 61, 810 (1988).

    Article  ADS  Google Scholar 

  51. B. Sawatzky, Ph.D. thesis, University of Virginia, 2005.

    Google Scholar 

  52. M. Blackston, Ph.D. thesis, Duke University, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ho Hyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J.W., Hyun, C.H. New photodisintegration model of GEANT4 for the np reaction with a dibaryon effective field theory. Journal of the Korean Physical Society 69, 726–733 (2016). https://doi.org/10.3938/jkps.69.726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.726

PACS numbers

Keywords

Navigation