Skip to main content
Log in

Vectorial platform for manipulating the polarization mode train realized with Jones vectors in Mathematica

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A fundamental concept in physics of polarization propagation of electromagnetic waves is newly understood as a cardinal keyword in quantum cryptography transport technology and cosmology. Recently, interactive visualization of the propagation mechanism of polarized electromagnetism in a medium with helicity has received attention from scientists in the age of information and communication. This study presents a new dynamic polarization platform that manipulates the polarization mode train of a transverse electromagnetic wave by using calculations with Jones vectors in the symbolic program Mathematica. The train of polarization modes is converted continuously through a desirable lineup of optical elements in the platform. The platform simulates a propagation process that satisfies Maxwell’s two vector equations precisely with helicity in the vectorial nature of the electromagnetic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  ADS  Google Scholar 

  2. X. Steve Yao, L. S. Yan, B. Zhang, A. E. Willer and J. Jiang, Opt. Express 15, 7407 (2007).

    Article  ADS  Google Scholar 

  3. S. W. Lee and Y. Sung, JKIEES 15, 115 (2015).

    Google Scholar 

  4. A. Rubenhok, J. A. Slater, P. Chan, I. Lucio-Martinez and W. Tittel, Phys. Rev. Lett. 111, 130501 (2013).

    Article  ADS  Google Scholar 

  5. W. A. Hiltner, Science 109, 165 (1949).

    Article  ADS  Google Scholar 

  6. J. S. Hall, Science 109, 166 (1949).

    Article  ADS  Google Scholar 

  7. L. A. Boyle, P. J. Steinhardt and N. Turok 2006, arXiv:astro-ph/0507455v3, 22 Mar. 2006.

  8. P. A. R. Ade, R. W. Aikin, D. Barkats, S. J. Benton, C. A. Bischoff et al., Phys. Rev. Lett. 114, 101301 (2015).

    Article  ADS  Google Scholar 

  9. B. P. Abbott, R. A. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernse et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  Google Scholar 

  10. E. Berti, Physics 9, 17 (2016).

    Article  Google Scholar 

  11. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, 1987), Chap. 17, p. 343.

    Google Scholar 

  12. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975), Chap. 7, p. 273.

    MATH  Google Scholar 

  13. G. R. Fowles, Introduction to Modern Optics (Holt, Reinhart and Winston, New York, 1975), Chap. 2, Chap. 6.

    Google Scholar 

  14. R. Reitz, F. J. Milford and W. Christy, Foundation of electromagnetic theory, 4th ed. (Addison-Wesley, Reading, Massachusetts, 1993), Chap. 17, p. 416.

    Google Scholar 

  15. M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), p. 795.

    Book  Google Scholar 

  16. H. Georgi, Lie Algebra in Particle Physics (Benjamin Inc., London, 1982), p. 162.

    Google Scholar 

  17. M. Goldhaver, L. Grodzins and A.W. Sunyar, Phys. Rev. 109, 1015 (1958).

    Article  ADS  Google Scholar 

  18. T. Aaltonen, V. M. Abazov, B. Abbott, B. S.Acharya, M. Adams et al., Phys. Rev. Lett. 116, 061102 (2012).

    ADS  Google Scholar 

  19. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  20. P. T. Tamm, A Physicist’s Guide to Mathematica (Academic Press, San Diego, 1997), p. 291.

    Google Scholar 

  21. Polarization of an Optical Wave through Polarizers and Wave Plates, http://demonstrations.wolfram. com/PolarizationOfAnOpticalWave Through-PolarizersAndWavePlates/(2016).

  22. Optics Applets, http://www.cabrillo.edu/~jmccullough/Applets/Flash/Optics/CircPol.swf (2016).

  23. H. J. Yun and Y. D. Choi, New Physics: Sae Mulli 63, 1118 (2013).

    Google Scholar 

  24. Y. D. Choi and H. J. Yun, J. Korean Phys. Soc. 67, 792 (2015).

    Article  ADS  Google Scholar 

  25. Wolfram Mathematica, http://www.wolfram. com/mathematica (2016).

  26. R. Clark Jones, J. Opt. Soc. Am. 31, 488 (1941).

    Article  ADS  Google Scholar 

  27. jdpmp4t programs, http://home.mokwon.ac.kr/~heejy/program.htm (2016).

  28. CDF Player, http://www.wolfram.com/cdf-player/ (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Joong Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.W., Yun, HJ. Vectorial platform for manipulating the polarization mode train realized with Jones vectors in Mathematica . Journal of the Korean Physical Society 69, 697–707 (2016). https://doi.org/10.3938/jkps.69.697

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.697

PACS numbers

Keywords

Navigation