Skip to main content
Log in

A novel two-axis parallel-kinematic high-speed piezoelectric scanner for atomic force microscopy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

High-speed atomic force microscopy permits the capture of static, as well as the dynamic, processes present in various physical phenomena. Unlike visualizing static processes, capture of dynamic processes requires high-speed scanning in all three dimensions. Despite the recent increased interest in high-speed atomic force microscopy, relatively few reports concerning piezoelectric actuator-driven scanners for high-speed scanning have been published. In this paper, we propose a novel design for a high-speed two-dimensional piezoelectric scanner unit by combining the positive features developed from works published in the literature. The proposed design ensures high vertical stiffness by utilizing compliant double-hinged flexure that minimizes cross-coupling and parasitic motions. Any high-speed scanner design requires a compromise between the two main competing parameters: maximum scan size and speed. The performance of the proposed scanner was evaluated by using numerical simulations with finite element analyses in terms of the mechanical resonance frequencies and the scan range. Finally, the results from the numerical simulations are compared with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  ADS  Google Scholar 

  2. P. N. Adrian, W. E. Blake, H. Nahid, D. A. Jonathan and E. F. Georg, Sci. Rep. 15, 11987 (2015).

    Google Scholar 

  3. G. E. Fantner, R. J. Barbero, D. S. Gray and A. M. Belcher, Nat. Nanotechnol. 5, 280 (2010).

    Article  ADS  Google Scholar 

  4. J. Loos, Adv. Mater. 17, 1821 (2005).

    Article  Google Scholar 

  5. D. Masoud, S. Samira, U. B. Leila and S. Soheil, Optics 3, 15 (2014).

    Article  Google Scholar 

  6. B. Wolf and P. Paufler, Cryst. Res. Techno. 31, 505 (1996).

    Article  Google Scholar 

  7. J. Sangmin, T. Thomas and B. Yehuda, Appl. Phys. Lett. 88, 214102 (2006).

    Article  Google Scholar 

  8. X. Li-Chong, H. P. F. Herbert and C. Kwong-Yu, J. Electrochem. Soc. 146, 4455 (1999).

    Article  Google Scholar 

  9. R. Mahlberg, H. E. M. Niemi, F. S. Denes and R. M. Rowell, Langmuir 15, 2985 (1999).

    Article  Google Scholar 

  10. G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  ADS  Google Scholar 

  11. G. Binnig and D. P. E. Smith, Phys. Rev. Lett. 57, 1688 (1986).

    Article  Google Scholar 

  12. D. Croft, G. Shed and S. Devasia, J. Dyn. Syst. Meas. 123, 35 (2001).

    Article  Google Scholar 

  13. M. J. Rost, G. J. C. Van Baarle, A. J. Katan, W. M. Van Spengen, P. Schakel, W. A. Loo, T. H. Oosterkamp and J. W. M. Frenken, Asian J. Control 11, 110 (2009).

    Article  Google Scholar 

  14. A. Mohammadi, A. G. Fowler, Y. K. Yong and S. O. R. Moheimani, J. Microelectromech. Syst. 23, 610 (2014).

    Article  Google Scholar 

  15. S. Wadikhaye, Y. K. Yong and S. O. R. Moheimani, Rev. Sci. Intsrum. 85, 105104 (2014).

    Article  ADS  Google Scholar 

  16. A. Toshio, Curr. Opin. Struc. Biol. 28, 63 (2014).

    Article  Google Scholar 

  17. B. J. Kenton and K. K. Leang, IEEE/ASME Trans. Mechatronics 17, 356 (2012).

    Article  Google Scholar 

  18. Y. Shan and K. K. Leang, IEEE Control. Syst. Mag. 86 (2013).

    Google Scholar 

  19. T. Ando, K. Noriyuki, N. Yasuyuki, T. Kinoshita, K. Furuta and Y. Y. Toyoshima, Chem Phys Chem 4, 1196 (2003).

    Google Scholar 

  20. T. Ando, U. Takayuki and K. Noriyuki, Jpn. J. Appl. Phys. 51, 08KA02 (2012).

    Article  Google Scholar 

  21. V. E. Gough and S. G. Whitehall, in Proceedings of the 9th International Technical Congress (FISITA, April-May, 1962), p. 117.

    Google Scholar 

  22. G. Schitter, J. T. Philipp and K. H. Paul, Mechatronics 18, 282 (2008).

    Article  Google Scholar 

  23. G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner and P. K. Hansma, IEEE Trans. Control Syst. Technol. 15, 906 (2007).

    Article  Google Scholar 

  24. K. Y. Yuen and S. O. R. Moheimani, in Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Montreal, Canada, July 6-9, 2010), p. 225.

    Google Scholar 

  25. T. Ando, T. Uchihashi and T. Fukuma, Prog. Surf. Sci. 83, 337 (2008).

    Article  ADS  Google Scholar 

  26. T. Fukuma, Y. Okazaki, N. Kodera, T. Uchihashi and T. Ando, Appl. Phys. Lett. 92, 243119 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Joong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alunda, B.O., Lee, Y.J. & Park, S. A novel two-axis parallel-kinematic high-speed piezoelectric scanner for atomic force microscopy. Journal of the Korean Physical Society 69, 691–696 (2016). https://doi.org/10.3938/jkps.69.691

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.691

PACS numbers

Keywords

Navigation