Journal of the Korean Physical Society

, Volume 69, Issue 4, pp 640–646 | Cite as

Ta2O5-memristor synaptic array with winner-take-all method for neuromorphic pattern matching

  • Son Ngoc Truong
  • Khoa Van Pham
  • Wonsun Yang
  • Kyeong-Sik Min
  • Yawar Abbas
  • Chi Jung Kang
  • Sangho Shin
  • Ken Pedrotti
Article
  • 112 Downloads

Abstract

Pattern matching or pattern recognition is one of the elemental components that constitute the very complicated recalling and remembering process in human’s brain. To realize this neuromorphic pattern matching, we fabricated and tested a 3 × 3 memristor synaptic array with the winner-take-all method in this research. In the measurement, first, the 3 × 3 Ta2O5 memristor array is programmed to store [LLL], [LHH], and [HLH], where L is a low-resistance state and H is a high-resistance state, at the 1st, 2nd, and 3rd columns, respectively. After the programming, three input patterns, [111], [100], and [010], are applied to the memristor synaptic array. From the measurement results, we confirm that all three input patterns can be recognized well by using a twin memristor crossbar with synaptic arrays. This measurement can be thought of as the first real verification of the twin memristor crossbar with memristive synaptic arrays for neuromorphic pattern recognition.

Keywords

Memristor Memristor array Winner take all Neuromorphic memristor crossbar Pattern matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Mead, Proc. IEEE 78, 1629 (1990).CrossRefGoogle Scholar
  2. [2]
    J. Hasler and B. Marr, Front. Neu. 7, 1 (2013).Google Scholar
  3. [3]
    D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, Nature 453, 80 (2008).ADSCrossRefGoogle Scholar
  4. [4]
    S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder and W. Lu, Nano Lett. 10, 1297 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    J. P. Strachan, A. C. Torrezan, G. M. Ribeiro and R. S. Williams, Nanotech. 22, 1 (2011).Google Scholar
  6. [6]
    C. Kügeler, M. Meier, R. Rosezin, S. Gilles and R. Waser, Solid State Electron. 53, 1287 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, H.-S. P. Wong and S. Mitra, IEEE International Electron Devices Meeting (San Francisco, CA, 15-17 Dec., 2014), p. 638.Google Scholar
  8. [8]
    B. K. Kim, M. H. Jeon and H. J. Song, J. Korean Phys. Soc. 67, 1930 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    N. An, H. Lee, S. Sharma, Y. Lee, D. Y. Kim and S. Lee, J. Korean Phys. Soc. 68, 869 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    S. N. Truong, S. J. Ham and K. S. Min, Nanosca. Res. Lett. 9, 1 (2014).CrossRefGoogle Scholar
  11. [11]
    S. N. Truong, S. H. Shin, S. D. Byeon, J. S. Song and K. S. Min, IEEE Trans. Nanotech. 14, 1104 (2015).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Son Ngoc Truong
    • 1
  • Khoa Van Pham
    • 1
  • Wonsun Yang
    • 1
  • Kyeong-Sik Min
    • 1
  • Yawar Abbas
    • 2
  • Chi Jung Kang
    • 2
  • Sangho Shin
    • 3
  • Ken Pedrotti
    • 4
  1. 1.School of Electrical EngineeringKookmin UniversitySeoulKorea
  2. 2.Department of PhysicsMyongji UniversityYonginKorea
  3. 3.Department of Electrical and Computer EngineeringRowan UniversityGlassboroUSA
  4. 4.Department of Electrical EngineeringUniversity of CaliforniaSanta CruzUSA

Personalised recommendations