Skip to main content

Theoretical study of an asymmetric A-π-D-π-D-π-A′ tribranched organic sensitizer for dye-sensitized solar cells

Abstract

An asymmetric A-π-D-π-D-π-A′ tribranched organic dye (dye1) with cyanoacrylic acid and indolinum carboxyl acid as electron acceptors and triphenylamine as an electron donor was designed and theoretically investigated for dye-sensitized solar cells (DSSCs). Dye1 was compared to reference well-known dyes with single electron acceptors (D5 and JYL-SQ6). Density functional theory and time-dependent density functional theory calculations were used to estimate the photovoltaic properties of the dyes. Due to the different lowest unoccupied molecular orbital levels of each acceptor and the energy antenna of the dual electron donor (D-π-D), the absorption spectra of the branches displayed different shapes. If the overall properties are considered, the asymmetric A-π-D-π-D-π-A′ tribranched organic dye exhibited a high conversion efficiency performance for DSSCs. The findings of this work suggest that optimizing the branch of electron donors and acceptors in dye sensitizers based on asymmetric A-π-D-π-D-π-A′ tribranched organic dye produces good photovoltaic properties for DSSCs.

This is a preview of subscription content, access via your institution.

References

  1. B. O’Regan and M. Gratzel, Nature 353, 737 (1991).

    Article  ADS  Google Scholar 

  2. M. Gratzel, Inorg. Chem. 44, 681 (2005).

    Article  Google Scholar 

  3. D. Kuang, S. Ito, B. Wenger, C. Klein, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc. 128, 4146 (2006).

    Article  Google Scholar 

  4. D. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, Adv. Funct. Mater. 17, 154 (2007).

    Article  Google Scholar 

  5. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin and M. Gratzel, Nature 499, 316 (2013).

    Article  ADS  Google Scholar 

  6. J. A. Yella, H. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. W. Diau, C. Yeh, S. M. Zakeeruddin and M. Gratzel, Science 334, 629 (2011).

    Article  ADS  Google Scholar 

  7. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gratzel, J. Am. Chem. Soc. 127, 16835 (2005).

    Article  Google Scholar 

  8. T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, J. Am. Chem. Soc. 126, 12218 (2004).

    Article  Google Scholar 

  9. L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida and M. Gratzel, Adv. Mater. 17, 813 (2005).

    Article  Google Scholar 

  10. S. Z. Wang, Y. Cui, K. Hara, Y. Dan-Oh, C. Kasada and A. Shinpo, Adv. Mater. 19, 1138 (2007).

    Article  Google Scholar 

  11. K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagochi, Y. Abe, H. Sugilhara and H. Arakawa, Chem. Commun. 13, 1173 (2000).

    Article  Google Scholar 

  12. T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, J. Am. Chem. Soc. 126, 12218 (2004)

    Article  Google Scholar 

  13. H. W. Ham and Y. S. Kim, Thin Solid Films 518, 6558 (2010).

    Article  ADS  Google Scholar 

  14. L. L. Li and W. G. Diau, Chem. Soc. Rev. 42, 291 (2013).

    Article  Google Scholar 

  15. S. Ferrere and B. Gregg, New J. Chem. 26, 1155 (1997).

    Article  Google Scholar 

  16. D. Y. Kwon, D. M. Chang and Y. S. Kim, J. Nanosci. Nanotechnol. 15, 1520 (2015); 15, 2473 (2015).

    Article  Google Scholar 

  17. T. Marinado et al., Phys. Chem. Chem. Phys. 11, 133 (2009).

    Article  Google Scholar 

  18. D. P. Hagberg et al., J. Am. Chem. Soc. 130, 6259 (2008).

    Article  Google Scholar 

  19. J. Y. Kim and Y. S. Kim, J. Nanosci. Nanotechnol. 12, 5719 (2012).

    Article  Google Scholar 

  20. N. Lim, N. Cho, S. Paek, C. Kim, J. K. Lee and J. Ko, Chem. Mater. 26, 2283 (2014)

    Article  Google Scholar 

  21. X. X. Dai, H. L. Feng, W. J. Chen, Y. Yang, L. B Nie, L. Wang, D. B. Kuang, H. Meier and D. Cao, Dyes Pigm. 122, 13 (2015).

    Article  Google Scholar 

  22. S. S. Park, Y. S. Won, Y. C. Choi and J. H. Kim, Energy & Fuels 23, 3732 (2009).

    Article  Google Scholar 

  23. S. A. Haque, S. Handa, K. Peter, E. Palomares, M. Thelakkat and J. R. Durrant, Angew. Chem., Int. Ed. 44, 5740 (2005).

    Article  Google Scholar 

  24. H. Tian, X. Yang, J. Cong, R. Chen, C. Teng, J. Liu, Y. Hao, L. Wang and L. Sun, Dyes Pigm. 84, 62 (2010)

    Article  Google Scholar 

  25. J. Y. Li, C. Y. Chen, C. P. Lee, S. C. Chen, T. H. Lin, H. H. Tsai, K. C. Ho and C. G. Wu, Org. Lett. 12, 5454 (2010).

    Article  Google Scholar 

  26. F. D. Angelis, S. Fantacci and A. Selloni, Nanotechnology 19, 424002 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sik Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, G.H., Kim, Y.S. Theoretical study of an asymmetric A-π-D-π-D-π-A′ tribranched organic sensitizer for dye-sensitized solar cells. Journal of the Korean Physical Society 69, 381–385 (2016). https://doi.org/10.3938/jkps.69.381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.381

Keywords

  • Dye-sensitized solar cells (DSSCs)
  • Heteroleptic
  • Antenna
  • TDDFT
  • DFT