Advertisement

Journal of the Korean Physical Society

, Volume 69, Issue 3, pp 277–281 | Cite as

Electrical transport property of ZnO thin films at high H2 pressures up to 20 bar

  • Hyunggon Chu
  • Byung Hoon Kim
  • Joonhee Kang
Article

Abstract

We have investigated the H2 pressure-dependent (from vacuum to 20 bar) current-voltage characteristics of ZnO thin films prepared by the spin-coating method. The effect of gas pressure on the conductance (G) was subtracted using He gas. The G increased with increasing H2 pressure up to 2 bar, and then monotonically decreased with the further increases in the H2 pressure. Using X-ray diffraction patterns and X-ray photoelectron spectroscopy before and after H2 exposure, we found that the H2 spillover effect played an important role in the variation of G in the ZnO film.

Keywords

ZnO Thin film Electrical transport Hydrogen High pressure Spillover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z. L. Wang, J. Phys. Matter 16, R829 (2004).ADSCrossRefGoogle Scholar
  2. [2]
    Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  3. [3]
    X. L. Chen, B. H. Xu, J. M. Xue, Y. Zhao, C. C. Wei, J. Sun, Y. Wang, X. D. Zhang and X. H. Geng, Thin Solid Films. 515, 3753 (2007).ADSCrossRefGoogle Scholar
  4. [4]
    H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sakura and H. Hosono, Appl. Phys. Lett. 77, 475 (2000).ADSCrossRefGoogle Scholar
  5. [5]
    S. A. Studenkin, M. Cocivera, W. Kellner and H. Pascher, J. Luminescence, 91, 223 (2000).ADSCrossRefGoogle Scholar
  6. [6]
    F. K. Shan, G. X. Liu, Z. F. Liu, W. J. Lee, G. H. Lee, I. S. Kim, B. C. Shin and Y. S. Yu, J. Korean Phys. Soc. 45, 771 (2004).Google Scholar
  7. [7]
    Z. L. Wang, Adv. Mater. 24, 4632 (2012).CrossRefGoogle Scholar
  8. [8]
    K. S. Shin, S. S. Kim, D. H. Kim, G. C. Yoon and S. W. Kim, J. Korean Ceramic. Soc. 50, 173 (2013).CrossRefGoogle Scholar
  9. [9]
    J. I. Sohn et al., Sci. Rep. 4, 5680 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    E. S. Nour, C. O. Chey, M. Willander and O. Nur, Nanotech. 26, 095502 (2015).ADSCrossRefGoogle Scholar
  11. [11]
    S.-S. Kwon, W.-K. Hong, G. Jo, J. Maeng, T.-W. Kim, S. Song and T. Lee, Adv. Mater. 20, 4557 (2008).CrossRefGoogle Scholar
  12. [12]
    H. S. Gu, Z. Wang and Y. M. Hu, Sensors (Basel) 12, 5517 (2012).CrossRefGoogle Scholar
  13. [13]
    Y.-M. Kong, H.-M. Lee, S.-B. Huh, S.-K. Kim, Y.-Z You and D. Kim, Kor. J. Mater. Res. 20, 636 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    J. Eriksson, V. Khranovskyy, F. Söderlind, P.-O. Käll, R. Yakimova and A. L. Spets, Sensors Actuators. B, Chem. 137, 94 (2009).CrossRefGoogle Scholar
  15. [15]
    M. Xiao and M. Kuwabara, J. Mater. Sci. Technol. 21, 887 (2005).CrossRefGoogle Scholar
  16. [16]
    F. Decremps, F. Datchi, A. M. Saitta and A. Polian, Phys. Rev. B 68, 104101 (2003).ADSCrossRefGoogle Scholar
  17. [17]
    X.Dong, F.Liu, Y.Xie, W.Shi, XiangYe and J.Z.Jiang, Arxiv.org/1206.0415 (2012).Google Scholar
  18. [18]
    T. Yao, S.-K. Hong and T. Hanada, Oxide and Nitride Semiconductors Processing, Properties, and Applications (Springer, Berlin Heidelberg, 2009), p. 1.CrossRefGoogle Scholar
  19. [19]
    F. Ahmed, N. Arshi, M. S. Anwar, R. Danish and B. H. Koo, RSC Adv. 4, 29249 (2014).CrossRefGoogle Scholar
  20. [20]
    J.-C. Hsu, Y.-H. Lin, P. W. Wang and Y.-Y. Chen, Appl. Opt. 51, 1209 (2012).ADSCrossRefGoogle Scholar
  21. [21]
    Y. Zhao, G. Dong, L. Duan, J. Qiao, D. Zhang, L. Wang and Y. Qiu, RSC Adv. 2, 5307 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  1. 1.Department of PhysicsIncheon National UniversityIncheonKorea

Personalised recommendations