Skip to main content
Log in

Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

VO2 thin films were grown on a-, c-, m-, and r-plane sapphire and SiO2/Si substrates under identical conditions by using RF sputtering deposition from a VO2 target. The structural and the morphological properties of all VO2 films were investigated. The grain sizes of the VO2 films varied between 268 nm and 355 nm depending on the substrate’s orientation. The electrical and the optical properties of all VO2 thin films were examined in detail. The metal-insulator transition temperature (TMI) varied with the substrate’s orientation. The (200)/(\(\bar 211\) )-oriented VO2 films on the a-plane sapphire showed the lowest TMI of about 329.3 K (56.3 °C) while the (020)/(002)-VO2 films on the c-plane sapphire displayed the highest TMI of about 339.6 K (66.6 °C). The VO2 films showed reversible changes in the resistivity as large as 1.19 × 105 and a hysteresis of ~2 K upon traversing the transition temperature. The variations observed in the TMI with respect to the substrate’s orientation were due to changes in the lattice strain and the grain size distribution. Raman spectroscopy showed that metal (rutile) - insulator (monoclinic) transitions occurred via the M2 phase for VO2 films on the c-plane substrate rather than the direct M1 to rutile transition. The shifts in the phonon frequencies of the VO2 film grown on various sapphire substrates were explained in terms of the strain along the V-V atomic bond direction (cR). Our work shows a possible correlation between the transition parameters (e.g., TMI, sharpness, and hysteresis width) and the width (σ) of the grain size distribution. It also shows a possible correlation between the TMI and the resistivities at the insulating and the metallic phases for VO2 films grown on various sapphire substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70, 1039 (1998).

    Article  Google Scholar 

  2. G. A. Niklasson, S. Y. Li and C. G. Granqvist, J. Physics: Conf. Series 559, 012001 (2014).

    ADS  Google Scholar 

  3. Z. Yang, C. Ko and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).

    Article  ADS  Google Scholar 

  4. J. M. Atkin, S. Berweger, E. K. Chavez, M. B. Raschke, J. Cao, W. Fan and J. Wu, Phys. Rev. B 85, 020101 (2012).

    Article  ADS  Google Scholar 

  5. Y. Ji, Y. Zhang, M. Gao, Z. Yuan, Y. Xia, C. Jin, B. Tao, C. Chen, Q. Jia and Y. Lin, Sci. Rep. 4, 4854 (2014).

    ADS  Google Scholar 

  6. K. Okimura, N. H. Azhan, T. Hajiri, S. I. Kimura, M. Zaghrioui and J. Sakai, J. Appl. Phys. 115, 153501 (2014).

    Article  ADS  Google Scholar 

  7. J. Cao, Y. Gu, W. Fan, L. Q. Chen, D. F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel and J. Wu, Nano Lett. 10, 2667 (2010).

    Article  ADS  Google Scholar 

  8. J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter and D. H. Cobden, Nature 500, 431 (2013).

    Article  ADS  Google Scholar 

  9. M. Nazari, Y. Zhao, V. V. Kuryatkov, Z. Y. Fan, A. A. Bernussi and M. Holtz, Phys. Rev. B 87, 035142 (2013).

    Article  ADS  Google Scholar 

  10. Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).

    Article  ADS  Google Scholar 

  11. J. Sakai, M. Zaghrioui, M. Matsushima, H. Funakubo and K. Okimura, J. Appl. Phys. 116, 123510 (2014).

    Article  ADS  Google Scholar 

  12. E. Radue, E. Crisman, L. Wang, S. Kittiwatanakul, J. Lu, S. A. Wolf, R. Wincheski, R. A. Lukaszew and I. Novikova, J. Appl. Phys. 113, 233104 (2013).

    Article  ADS  Google Scholar 

  13. J. Jian, W. Zhang, C. Jacob, A. Chen, H. Wang, J. Huang and H. Wang, Appl. Phys. Lett. 107, 102105 (2015).

    Article  ADS  Google Scholar 

  14. D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer and M. A. El Khakani, Appl. Phys. Lett. 87, 051910 (2005).

    Article  ADS  Google Scholar 

  15. T. H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R. J. Narayan and J. Narayan, J. Appl. Phys. 107, 053514 (2010).

    Article  ADS  Google Scholar 

  16. Y. Zhao, J. H. Lee, Y. Zhu, M. Nazari, C. Chen, H. Wang, A. Bernussi, M. Holtz and Z. Fan, J. Appl. Phys. 111, 053533 (2012).

    Article  ADS  Google Scholar 

  17. Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, No. 82-0661.

  18. H. Lee, D. Biswas, M. V. Klein, H. Morkoç, D. E. Aspnes, B. D. Choe, J. Kim and C. O. Griffiths, J. Appl. Phys. 75, 5040 (1994).

    Article  ADS  Google Scholar 

  19. K. Nagashima, T. Yanagida, H. Tanaka and T. Kawai, Phys. Rev. B 74, 172106 (2006).

    Article  ADS  Google Scholar 

  20. J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).

    Article  ADS  Google Scholar 

  21. M. J. Miller and J. Wang, J. Appl. Phys. 117, 034307 (2015).

    Article  ADS  Google Scholar 

  22. R. A. Aliev, V. N. Andreev, V. M. Kapralova, V. A. Klimov, A. I. Sobolev and E. B. Shadrin, Phys. Solid State 48, 929 (2006).

    Article  ADS  Google Scholar 

  23. V. Eyert, Ann. Phys. 11, 650 (2002).

    Article  Google Scholar 

  24. R. Srivastava and L. L. Chase, Phys. Rev. Lett. 27, 727 (1971).

    Article  ADS  Google Scholar 

  25. M. Pan, J. Liu, H. Zhong, S. Wang, Z. F. Li, X. Chen and W. Lu, J. Cryst. Growth 268, 178 (2004).

    Article  ADS  Google Scholar 

  26. P. Schilbe, Physica B 316, 600 (2002).

    Article  ADS  Google Scholar 

  27. M. Zaghriouia, J. Sakai, N. H. Azhanb, K. Sub and K. Okimura, Vib. Spectro. 80, 79 (2015) and references therein.

    Article  Google Scholar 

  28. C. Marini et al., Phys. Rev. B 77, 235111 (2008).

    Article  ADS  Google Scholar 

  29. M. Nazari, Y. Zhao, V. Hallum, A. A. Bernussi, Z. Y. Fan and M. Holtz, Appl. Phys. Lett. 103, 043108 (2013).

    Article  ADS  Google Scholar 

  30. A. C. Jones, S. Berweger, J. Wei, D. Cobden and M. B. Raschke, Nano Letters 10, 1574 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D.H., So, H.S., Ko, K.H. et al. Electrical and optical properties of VO2 thin films grown on various sapphire substrates by using RF sputtering deposition. Journal of the Korean Physical Society 69, 1787–1797 (2016). https://doi.org/10.3938/jkps.69.1787

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1787

Keywords

Navigation