Skip to main content
Log in

Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator

  • Brief Reports
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report an Ar plasma treated polytetrafluoroethylene (PTFE) film based triboelectric device for a highly enhanced electric power generation. The plasma treatment of the PTFE in flowing Ar gas results in a sharp increase in surface roughness (~46 nm), as compared with the as-received film (~25 nm). In addition, the F ion content decreases whereas the O ion increases with increasing plasma reaction time. Because of the increased number of polar O ions, the surface becomes hydrophilic, as confirmed by water contact angle measurements. After the Ar plasma treatment, the PTFE based triboelectric device, which is periodically contacted with and separated from the ITO electrode, generates a 715 V open-circuit voltage and a 16 μA closed-circuit current, which are almost 79 and 32 times larger than those for as-received PTFE based device. Using the Ar plasma treated PTFE based triboelectric generator, we can turn on the 120 light emitting diodes (LEDs) without any batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. S. Dresselhaus and I. L. Thomas, Nature 414, 332 (2001).

    Article  ADS  Google Scholar 

  2. Z. L. Wang, Sci. Am. 298, 82 (2008).

    Article  ADS  Google Scholar 

  3. Z. L. Wang and J. H. Song, Science 312, 242 (2006).

    Article  ADS  Google Scholar 

  4. Z. L. Wang and W. Wu, Angew. Chem., Int. Ed. 51, 11700 (2012).

    Article  Google Scholar 

  5. J. H. Jung, M. Lee, J. I. Hong, Y. Ding, C. Y. Chen, L. J. Chou and Z. L. Wang, ACS Nano 5, 10041 (2011).

    Article  Google Scholar 

  6. P. G. Kang et al., RSC Adv. 4, 29799 (2014).

    Article  Google Scholar 

  7. S. Kim et al., Adv. Mater. 26, 3918 (2014).

    Article  Google Scholar 

  8. J. Chun, J. W. Kim, W. S. Jung, C. Y. Kang, S. W. Kim, Z. L. Wang and J. M. Baik, Energy Environ. Sci. 8, 3006 (2015).

    Article  Google Scholar 

  9. H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu and Z. L. Wang, Adv. Funct. Mater 25, 5691 (2015).

    Article  Google Scholar 

  10. W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim and S. W. Kim, ACS Nano 9, 3501 (2015).

    Article  Google Scholar 

  11. F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang and Z. L. Wang, Nano Lett. 12, 3109 (2012).

    Article  ADS  Google Scholar 

  12. C. K. Jeong et al., Nano Lett. 14, 7031 (2014).

    Article  ADS  Google Scholar 

  13. G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou and Z. L. Wang, Nano Lett. 13, 847 (2013).

    Article  ADS  Google Scholar 

  14. X. He, H. Guo, X. Yue, J. Gao, Y. Xia and C. Hu, Nanoscale 7, 1896 (2015).

    Article  ADS  Google Scholar 

  15. J. Chung, S. Lee, H. Yong, H. Moon, D. Choi and S. Lee, Nano Energy 20, 84 (2016).

    Article  Google Scholar 

  16. F. R. Fan, Z. Q. Tian and Z. L. Wang, Nano Energy 1, 328 (2012).

    Article  Google Scholar 

  17. B. K. Yun, J. W. Kim, H. S. Kim, K. W. Jung, Y. J. Yi, M. S. Jeong, J. H. Ko and J. H. Jung, Nano Energy 15, 523 (2015).

    Article  Google Scholar 

  18. H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu and Z. L. Wang, Adv. Funct. Mater. 25, 5691 (2015).

    Article  Google Scholar 

  19. Y. Xie, S. Wang, L. Lin, Q. Jing, Z-H. Lin, S. Niu, Z. Wu and Z. L. Wang, ACS Nano 7, 7119 (2013).

    Article  Google Scholar 

  20. W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao and Z. L. Wang, ACS Nano 7, 11317 (2013).

    Article  Google Scholar 

  21. D. J. Wilson, R. L. Williams and R. C. Pond, Surf. Interface Anal. 31, 385 (2001).

    Article  Google Scholar 

  22. L. H. Sperling, Introduction to physical polymer science (Wiley, New York, 2006).

    Google Scholar 

  23. L. Gao and T. J. McCarthy, Langmuir 24, 9183 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hoon Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.Y., Kim, H.S. & Jung, J.H. Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator. Journal of the Korean Physical Society 69, 1720–1723 (2016). https://doi.org/10.3938/jkps.69.1720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1720

Keywords

PACS numbers

Navigation