Skip to main content
Log in

Transparent bipolar resistive switching memory on a flexible substrate with indium-zinc-oxide electrodes

  • Letters
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We fabricated transparent indium zinc oxide (IZO)/TiO2/IZO devices on flexible polyethylene phthalate (PET) substrates. These devices demonstrate bipolar resistive switching behavior, exhibit a transmittance greater than 80 % for visible light, and have stable resistive switching properties, including long retention and good endurance. In addition, the devices were investigated based on their temperature dependence; the results show metallic properties in the low-resistance state (LRS) and semiconducting properties in the high-resistance state (HRS). The conduction mechanism for resistive switching in our device was well-fitted with Ohmic conduction in the LRS and Poole-Frenkel emission in the HRS. The mechanism could be explained by the formation and the rupture of the conduction paths formed by the movement of oxygen ions and vacancies. Moreover, acute bending of the devices did not affect the memory characteristics because of the pliability of both the IZO electrodes and the thin oxide layer. These results indicate potential applications as resistive random access memories in future flexible, transparent electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. K. Lee, Y. S. Lim, C. H. Park, Y. I. Park, C. D. Kim and Y. K. Hwang, IEEE Electron Device Lett. 31, 833 (2010).

    Article  ADS  Google Scholar 

  2. Y. Liu, N. Qi, T. Song, M. Jia, Z. Xia, Z. Yuan, W. Yuan, K. Q. Zhang and B. Sun, ACS Appl. Mater. Interfaces 6, 20670 (2014).

    Article  Google Scholar 

  3. W. Ji, J. Zhao, Z. Sun and W. Xie, Org. Electronics 12, 1137 (2011).

    Article  Google Scholar 

  4. S. H. K. Park et al., Adv. Mater. 21, 678 (2009).

    Article  Google Scholar 

  5. R. H. Reuss et al., Proc. IEEE 93, 1239 (2005).

    Article  Google Scholar 

  6. S. Zhang, J. Zhou, D. Zhang, B. Ren, L. Wang, J. Huang and L. Wang, Vacuum 125, 189 (2016).

    Article  ADS  Google Scholar 

  7. R. Waser, R. Dittmann, G. Staikov and K. Szot, Adv. Mater. 21, 2632 (2009).

    Article  Google Scholar 

  8. A. Sawa, Mater. Today 11, 28 (2008).

    Article  Google Scholar 

  9. K. Szot, R. Dittmann, W. Speier and R. Waser, Phys. Status Solidi: RRL 1, 86 (2007).

    Google Scholar 

  10. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).

    Article  ADS  Google Scholar 

  11. D. Ielmini, F. Nardi, C. Cagli and A.L. Lacaita, IEEE Electron Device Lett. 31, 353 (2010).

    Article  ADS  Google Scholar 

  12. G. Du, T. Li, C. Wang, B. Fang, B. Zhang and Z. Zeng, J. Phys. D:Appl. Phys. 48, 225301 (2015).

    Article  ADS  Google Scholar 

  13. K. Park and J. S. Lee, Nanotechnology 27, 125203 (2016).

    Article  ADS  Google Scholar 

  14. C. Y. Liu and C. H. Lin, IEEE Electron Device Lett. 35, 829 (2014).

    Article  ADS  Google Scholar 

  15. F. Kurnia, C. U. Jung, B. W. Lee and Chunli Liu, Appl. Phys. Lett. 107, 073501 (2015).

    Article  ADS  Google Scholar 

  16. H. D. Kim, M. J. Yun and S. Kim, J. of Alloys and Compd. 653, 534 (2015).

    Article  Google Scholar 

  17. E. Gale, D. Pearson, S. Kitson, A. Adamatzky and B. L. Costello, Mater. Chem. Phys. 162, 20 (2015).

    Article  Google Scholar 

  18. C. C. Lin, J. W. Liao and W. Y. Li, Ceram. Int. 39, S733 (2013).

    Article  Google Scholar 

  19. S. M. Sze, Physics of Semiconductor Devices (second ed., Wiley, New York, 1981, p. 154).

    Google Scholar 

  20. W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang and F. Chen, Appl. Phys. Lett. 92, 022110 (2008).

    Article  ADS  Google Scholar 

  21. M. J. Kim, D. S. Jeon, J. H. Park and T. G. Kim, Appl. Phys. Lett. 106, 2031101 (2015).

    ADS  Google Scholar 

  22. N. Ghenzi, M. J. Rozenberg, R. Llopis, P. Levy, L. E. Hueso and P. Stoliar, Appl. Phys. Lett. 106, 123509 (2015).

    Article  ADS  Google Scholar 

  23. R. Mundle, H. Terry, M. Bahoura and A. K. Pradhan, J. Phys. D:Appl. Phys. 46, 475101 (2013).

    Article  ADS  Google Scholar 

  24. K. M. Kim, D. S. Jeong and C. S. Hwang, Nanotechnology 22, 254002 (2011).

    Article  ADS  Google Scholar 

  25. S. Na-Phattalung, M. F. Smith, K. Kim, M. H. Du, S. H. Wei, S. B. Zhang and S. Limpijumnong, Phys. Rev. B 73, 125205 (2006).

    Article  ADS  Google Scholar 

  26. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg and B. P. Andreasson, Adv. Mater. 19, 2232 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Won Shim or Byeong-Kwon Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, SW., Ha, H.J., Park, J. et al. Transparent bipolar resistive switching memory on a flexible substrate with indium-zinc-oxide electrodes. Journal of the Korean Physical Society 69, 1613–1618 (2016). https://doi.org/10.3938/jkps.69.1613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1613

Keywords

PACS numbers

Navigation