Skip to main content
Log in

Study of silicon PIN diode responses to low energy gamma-rays

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Low energy gamma-ray detectors play an important role in diagnosis in nuclear medicine, in detection of gamma-ray bursts for gravitational wave research and in detection of underground nuclear tests. The silicon positive-intrinsic-negative (PIN) diode detector is useful for detection of low energy gamma radiation without using a scintillator because it generates a high signal in a small active volume, has a fast response time and has good intrinsic energy resolution. We measured the detector responses, energy resolutions and signal-to-noise ratios for various gamma energies by using manufactured silicon PIN diode and photodiodes. Radioactive gamma sources, 241Am, 133Ba, and 57Co, providing gamma-rays with energies between 14.4 keV and 136.5 keV are used for the measurements. The energy resolution and the signal-to-noise ratio for 14.4 keV gamma-ray are measured to be 17.1 % and 12.8 for a 500 μm thick silicon diode. The energy resolutions measured at the FWHM for 59.5 keV and 122.1 keV gamma-rays by using the silicon diode are better by up to two times compared to those obtained using the NaI:Tl or the BGO scintillator with a photomultiplier tube. The dependence of detection speeds of the signals on the diode’s thickness is also measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Tindall et al., IEEE Trans. Nucl. Sci. 55, 797 (2008).

    Article  ADS  Google Scholar 

  2. G. Cho, Nucl. Med. Molecular Imaging 42, 88 (2008).

    Google Scholar 

  3. N. Gehrels et al., Astrophys. J. 611, 1005 (2012).

    Article  ADS  Google Scholar 

  4. T. W. Bowyer et al., J. Environmental Radioactivity 59, 139 (2002).

    Article  Google Scholar 

  5. G. Lutz, Semiconductor Radiation Detectors (Springer-Verlag, Berlin, Heidelberg, 1999), p. 81.

    MATH  Google Scholar 

  6. S. D. Sordo et al., Sensors 9, 3491 (2009).

    Article  Google Scholar 

  7. W. Hennig et al., J. Radioanal. Nucl. Chem. 296, 675 (2013).

    Article  Google Scholar 

  8. J. B. Bae, H. J. Hyun, D. H. Kah, K. H. Kang and H. Park, J. Korean Phys. Soc. 63, 1418 (2013).

    Article  ADS  Google Scholar 

  9. H. B. Jeon, K. H. Kang, H. Park and H. J. Hyun, J. Korean Phys. Soc. 66, 1451 (2015).

    Article  ADS  Google Scholar 

  10. D. H. Kah, J. B. Bae, H. J. Hyun, H. J. Kim, H. O. Kim and H. Park, Nucl. Instr. and Meth. A 628, 256 (2011).

    Article  ADS  Google Scholar 

  11. B. Kim, K. Kang, T. Kim, H. Kim, H. Park, S. Lee and H. Jeon, New Physics: Sae Mulli 66, 326 (2016).

    Google Scholar 

  12. A. Ceccucci et al., Nucl. Instr. and Meth. A 360, 224 (1995).

    Article  ADS  Google Scholar 

  13. T. Ferbel, Exper. Tech. in High Energy Phys. (Addison-Wesley, Boston, 1987), p. 287.

    Google Scholar 

  14. Hamamatsu, Photomultiplier Tubes (Hamamatsu Photonics K. K., Shizuoka, 2006), p. 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.C., Jeon, H.B., Kang, K.H. et al. Study of silicon PIN diode responses to low energy gamma-rays. Journal of the Korean Physical Society 69, 1587–1590 (2016). https://doi.org/10.3938/jkps.69.1587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1587

Keywords

Navigation