Advertisement

Journal of the Korean Physical Society

, Volume 69, Issue 8, pp 1341–1346 | Cite as

Single-step metal-organic vapor-phase diffusion for low-dark-current planar-type avalanche photodiodes

  • Dong-Hwan Jun
  • Hae Yong Jeong
  • Youngjo Kim
  • Chan-Soo Shin
  • Kyung Ho Park
  • Won-Kyu Park
  • Min-Su Kim
  • Sangin Kim
  • Sang Wook Han
  • Sung Moon
Article
  • 40 Downloads

Abstract

In this paper, a p-type diffusion process based literally on single-step metal-organic vapor-phase diffusion (MOVPD) employing diethyl zinc as the diffusion source in combination with the recessetching technique is developed to improve the dark-current characteristics of planar-type avalanche photodiodes (APDs). The developed single-step MOVPD process exhibits on excellent linear relationship between the diffusion depth and the square root of the diffusion time, which mainly results from maintaining constant source diffusion. The single-step MOVPD process without any additional thermal activation process achieves a surface doping concentration of 1.9 × 1018 cm -3, which is sufficient to form ohmic contact. The measured diffusion profiles of the APDs clearly reveal the presence of a two-dimensional diffusion front formed by the recess-etched and guard-ring regions. The impact of this p-type diffusion process on the performance of the APD devices has also been demonstrated by exhibiting improved dark-current characteristics for the fabricated APDs.

Keywords

Photodiodes III-V materials diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Acerbi, A. Tosi and F. Zappa, Sensor and Actuators A 201, 207 (2013).CrossRefGoogle Scholar
  2. [2]
    F. O. J. Pitts, W. Benyon, D. Goodchild and A. J. Spring Thorpe, J. Cryst. Growth 352, 249 (2012).ADSCrossRefGoogle Scholar
  3. [3]
    K. Lee and K. Yang, IEEE Photon. Tech. Lett. 26, 999 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    X. Jiang, M. A. Itzler, R. Ben-Michael and K. Slomkowski, IEEE J. Sel. Topics Quant. Electron. 13, 895 (2007).CrossRefGoogle Scholar
  5. [5]
    M. Liu, X. Bai, C. Hu, X. Guo, Joe C. Campbell, Z. Pan and Mark M. Tashima, IEEE Photon. Tech. Lett. 19, 378 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler and X. Jiang, IEEE Photon. J. 3, 31 (2011).CrossRefGoogle Scholar
  7. [7]
    K-S. Hyun and C-Y. Park, J. Appl. Phys. 82, 974 (1997).ADSCrossRefGoogle Scholar
  8. [8]
    L. E. Tarof, R. Bruce, D. G. Knight, J. Yu, H. B. Kim and T. Baird, IEEE Photon. Tech. Lett. 7, 1330 (1995).ADSCrossRefGoogle Scholar
  9. [9]
    J. Jung, Y. Hwan Kwon, K. Sook Hyun and I. Yun, IEEE Photon. Tech. Lett. 14, 1160 (2002).ADSCrossRefGoogle Scholar
  10. [10]
    K. Lee, B. Lee, S. Yoon, J.-H. Hong and K. Yang, Jpn. J. Appl. Phys. 52, 072201-1 (2013).Google Scholar
  11. [11]
    J. Jung, Y. H. Kwon, K. S. Hyun and I. Yun, IEEE Photon. Tech. Lett. 14, 1160 (2002).ADSCrossRefGoogle Scholar
  12. [12]
    K. Vanhollebeke, M. D’Hondt1, I. Moerman, P. Van Daele and P. Demeester, J. Cryst. Growth 233, 132 (2001).ADSCrossRefGoogle Scholar
  13. [13]
    A. van Geelen, T. M. F. de Smet, T. van Dongen and W. M. E. M. van Gils, J. Cryst. Growth 195, 79 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    D. Franke, F. W. Reier and N. Grote, J. Cryst. Growth 195, 112 (1998).ADSCrossRefGoogle Scholar
  15. [15]
    M. Wada, K. Sakakibara, M. Higuchi and Y. Sekiguchi, J. Cryst. Growth 114, 321 (1991).ADSCrossRefGoogle Scholar
  16. [16]
    C. A. Hampel, C. Blaauw, J. E. Haysom, R. Glew, I. D. Calder, S. Guillon, T. Bryskiewicz and N. Puetz, J. of Vacuum Sci. and Tech. A 22, 916 (2004).ADSCrossRefGoogle Scholar
  17. [17]
    O. J. Pitts, W. Benyon, D. Goodchild and A. J. Spring Thorpe, J. Cryst. Growth 393, 85 (2014).ADSCrossRefGoogle Scholar
  18. [18]
    Q. Y. Zeng, W. J. Wang, W. D. Hu, N. Li and W. Lu, Opt. Quant. Electron. 46, 1203 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2016

Authors and Affiliations

  • Dong-Hwan Jun
    • 1
  • Hae Yong Jeong
    • 1
  • Youngjo Kim
    • 1
  • Chan-Soo Shin
    • 1
  • Kyung Ho Park
    • 1
  • Won-Kyu Park
    • 1
  • Min-Su Kim
    • 2
  • Sangin Kim
    • 2
  • Sang Wook Han
    • 3
  • Sung Moon
    • 3
  1. 1.Korea Advanced Nano Fab Center (KANC)SuwonKorea
  2. 2.Department of Electrical and Computer EngineeringAjou UniversitySuwonKorea
  3. 3.Korea Institute of Science and TechnologySeoulKorea

Personalised recommendations