Skip to main content
Log in

Wave propagation simulation based on the Fourier diffraction integral for X-ray refraction contrast imaging-computed tomography

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

With the advent of coherent X-ray sources, X-ray refraction has begun to be utilized for X-ray imaging of unprecedented sensitivity. The aim of this study was to develop a wave propagation simulator that provides a map of X-ray refraction after passing through an object. We applied the Fresnel diffraction integral for calculating the propagated wave and then obtained the refraction map by differentiating the phase in the refraction-analyzing direction. The simulation was validated by comparing the computed tomography (CT) reconstruction of a virtual phantom with its map of refractive index: the deviations were below 0.7% for soft tissues under our test condition. The simulator can be used for testing and developing highly-sensitive X-ray imaging techniques based on X-ray refraction analysis prior to experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hirano and K. Yamasaki, Nucl. Instrum. Meth. Phys. Res. A 548, 187 (2005).

    Article  ADS  Google Scholar 

  2. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli and D. Sayers, Phys. Med. Biol. 42, 2015 (1997).

    Article  Google Scholar 

  3. Z. Zhong, W. Thomlinson, D. Chapman and D. Sayers, Nucl. Instrum. Meth. Phys. Res. A 450, 556 (2000).

    Article  ADS  Google Scholar 

  4. F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion and W. C. Thomlinson, Phys. Med. Biol. 45, 933 (2000).

    Article  Google Scholar 

  5. Y. Sun, P. Zhu, J. Yu and X. Chen, Comp. Med. Img. Graph. 31, 383 (2007).

    Article  Google Scholar 

  6. S. J. Seo, N. Sunaguch, T. Yuasa, Q. Huo, M. Ando, G. H. Choi, H. T. Kimg, K. H. Kim, E. J. Jeong, W. S. Chang and J. K. Kim, Phys. Med. Bio. 57, 1251 (2012).

    Article  Google Scholar 

  7. N. Sunaguchi, T. Yuasa, Q. Huo, S. Ishihara and M. Ando, Appl. Phys. Lett. 97, 153701 (2010).

    Article  ADS  Google Scholar 

  8. N. Sunaguchi, T. Yuasa, Q. Huo and M. Ando, Opt. Lett. 36, 391 (2011).

    Article  ADS  Google Scholar 

  9. M. Ando, N. Sunaguchi, Y. Wu, S. Do, Y. Sung, A. Louissaint, T. Yuasa, S. Ichihara and R. Gupta, Eur. Radiol. 24, 423 (2014).

    Article  Google Scholar 

  10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens and E. Ziegler, Opt. Exp. 13, 6296 (2005).

    Article  ADS  Google Scholar 

  11. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig and C. David, Nat. Mat. 7, 134 (2008).

    Article  Google Scholar 

  12. M. Hirano, K. Yamasaki, H. Okada, T. Sakurai, T. Kondoh, T. Katafuchi, K. Sugimura, S. Kitazawa, R. Kitazawa, S. Maeda and S. Tamura, Radiat. Med. 23, 386 (2005).

    Google Scholar 

  13. M. Dottiling, T. Zwick and W. Wiesbeck, Tenth International Conf. on Antennas and Propagation, Publ. No. 436. 2, 311 (1997).

    Google Scholar 

  14. C. F. Yang, B. C. Wu and C. J. Ko, IEEE Trans. on Antennas and Propagation 46, 907 (1998).

    Article  ADS  Google Scholar 

  15. Y. Wang, S. K. Chaudhuri and S. N. Safieddin, IEEE Trans. on Antennas and Propagation 50, 1598 (2002).

    Article  ADS  Google Scholar 

  16. Y. M. Govaerts and M. M. Verstraete, IEEE Trans. on Geosci. and Remote Sensing 36, 493 (1998).

    Article  ADS  Google Scholar 

  17. Y. Wang, S. N. Safieddin and S. K. Chaudhuri, IEEE Trans. on Antennas and Propagation 48, 743 (2000).

    Article  ADS  Google Scholar 

  18. D. Paganin, Coherent X-ray Optics (Oxford University Press, Oxford, New York, 2006).

    Book  MATH  Google Scholar 

  19. S. W. Willkins, T. E. Gureyev, D. Gao, A. Pogany and A. W. Stevenson, Nature 384, 335 (1996).

    Article  ADS  Google Scholar 

  20. M. S. del Rio and R. J. Dejus, Adv. Comput. Meth. XRay Neutron Optics 5536, 171 (2004).

    Article  ADS  Google Scholar 

  21. J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2001).

    Google Scholar 

  22. N. Sunaguchi, T. Yuasa, S. Hirano, R. Gupta and M. Ando, PLoS ONE 10(8): e0135654. doi:10.1371/journal.pone.0135654 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hong Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WS., Kim, JK., Cho, JH. et al. Wave propagation simulation based on the Fourier diffraction integral for X-ray refraction contrast imaging-computed tomography. Journal of the Korean Physical Society 69, 1098–1104 (2016). https://doi.org/10.3938/jkps.69.1098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1098

Keywords

Navigation