Skip to main content
Log in

Black hole entropy predictions without the Immirzi parameter and Hawking radiation of a single-partition black hole

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By pointing out an error in the previous derivation of the area spectrum based on Ashtekar’s variables, we suggest a new area spectrum; instead of the norm of Ashtekar’s gravitational electric field, we show that the norm of our “new” gravitational electric field based on our “newer” variables, which we construct in this paper for this purpose, gives the correct area spectrum. In particular, our “newer” variables are mathematically consistent; the constraint algebra is closed. Moreover, by using our new area spectrum, we “almost correctly” predict the Bekenstein-Hawking entropy without having to adjust the Immirzi parameter; we show that a numerical formula actually yielded 0.997 · · ·, which is very close to 1, the expected value with the black hole entropy given as A/4. We conjecture that the difference, 0.003, is due to the extra dimensions that may modify the area spectrum. Then, we derive a formula for the degeneracy for a single-partition black hole, i.e., a black hole made of a single unit area, and explicitly show that our area spectrum correctly reproduces the degeneracy. Furthermore, by using two totally different methods, we obtain the proportionality constant “C” related to the degeneracy. The first method based on fitting yields 172 ~ 173 while the second method yields 172.87· · ·, which strongly suggest that our area spectrum is on the right track. We also show that the area spectra based on Ashtekar variables neither reproduce the degeneracy of single-partition black hole nor yield agreement for C obtained by using the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Rovelli, Quantum Gravity (University Press, Cambridge, UK, 2004).

    Book  MATH  Google Scholar 

  3. C. Rovelli and L. Smolin, Nucl. Phys. B 442, 593 (1995) [Erratum-ibid. B 456, 753 (1995)] [arXiv:gr-qc/9411005].

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Rovelli, Phys. Rev. D 47, 1703 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Tanaka and T. Tamaki, arXiv:0808.4056 [hep-th].

  6. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976].

    Article  ADS  MathSciNet  Google Scholar 

  8. J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7 (1995) [arXiv:gr-qc/9505012].

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Ryder, Introduction to general relativity (Cambridge University Press, ambridge, UK, 2009).

    Book  MATH  Google Scholar 

  10. A. Einstein, Annalen Phys. 49, 769 (1916) [Annalen Phys. 14, 517 (2005)].

    Article  ADS  Google Scholar 

  11. S. Frittelli, L. Lehner and C. Rovelli, Class. Quant. Grav. 13, 2921 (1996) [arXiv:gr-qc/9608043]; A. Ashtekar and J. Lewandowski, Class. Quant. Grav. 14, A55 (1997) [arXiv:gr-qc/9602046].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Phys. Rev. Lett. 80, 904 (1998) [arXiv:gr-qc/9710007]; A. Ashtekar, A. Corichi and K. Krasnov, Adv. Theor. Math. Phys. 3, 419 (2000) [arXiv:gr-qc/9905089]; A. Ashtekar, J. C. Baez and K. Krasnov, Adv. Theor. Math. Phys. 4, 1 (2000) [arXiv:gr-qc/0005126].

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Domagala and J. Lewandowski, Class. Quant. Grav. 21, 5233 (2004) [gr-qc/0407051]; K. A. Meissner, Class. Quant. Grav. 21, 5245 (2004) [arXiv:gr-qc/0407052].

    Article  ADS  MathSciNet  Google Scholar 

  14. M. A. Nielsen and I. L. Chuang, Modern Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  15. L. Bombelli, R. K. Koul, J. H. Lee and R. D. Sorkin, Phys. Rev. D 34, 373 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  16. See, e.g.,’ t Hooft, hep-th/0003004.

  17. D. R. Terno, Int. J. Mod. Phys. D 14, 2307 (2005) [arXiv:gr-qc/0505068]; E. R. Livine and D. R. Terno, Nucl. Phys. B 741, 131 (2006) [arXiv:gr-qc/0508085]; W. Donnelly, Phys. Rev. D 77, 104006 (2008) [arXiv:0802.0880 [gr-qc]].

    Article  ADS  MathSciNet  Google Scholar 

  18. Y. Yoon, [arXiv:1210.8355 [gr-qc]].

  19. Y. Yoon, Gen. Rel. Grav. 45, 373 (2013) [arXiv:1211.0329 [gr-qc]].

    Article  ADS  Google Scholar 

  20. J. Fernando. G. Barbero, Phys. Rev. D 51, 5507 (1995) [gr-qc/9410014]; G. Immirzi, Nucl. Phys. Proc. Suppl. 57, 65 (1997) [gr-qc/9701052]; C. Rovelli and T. Thiemann, Phys. Rev. D 57, 1009 (1998) [arXiv:grqc/ 9705059].

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429, 263 (1998) [arXiv:hep-ph/9803315]; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436, 257 (1998) [arXiv:hepph/9804398].

    Article  ADS  Google Scholar 

  22. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221]; L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hepth/9906064].

    Article  ADS  MathSciNet  Google Scholar 

  23. O. Klein, Z. Phys. 37, 895 (1926) [Surveys High Energ. Phys. 5, 241 (1986)]; O. Klein, Nature 118, 516 (1926).

    Article  ADS  Google Scholar 

  24. A. Ghosh and P. Mitra, Phys. Lett. B 616, 114 (2005) [gr-qc/0411035].

    Article  ADS  MathSciNet  Google Scholar 

  25. C. V. Johnson, D-branes (University Press, Cambridge, USA, 2003), p. 95.

    MATH  Google Scholar 

  26. A. Einstein and P. Bergmann, Annals Math. 39, 683 (1938).

    Article  MathSciNet  Google Scholar 

  27. A. Einstein, V. Bargmann and P. Bergmann, “On the five-dimensional representation of gravitation and electricity,” Theodore von Kármán anniversary volume 212, (1941).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, B., Yoon, Y. Black hole entropy predictions without the Immirzi parameter and Hawking radiation of a single-partition black hole. Journal of the Korean Physical Society 68, 735–751 (2016). https://doi.org/10.3938/jkps.68.735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.735

Keywords

Navigation