Skip to main content
Log in

Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ∼ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Kim, W. B. Choi, N. S. Lee and J. E. Jung, Diamond and Related Materials 9–3, 1184 (2000).

    Article  ADS  Google Scholar 

  2. Y. Cheng and O. Zhou, Comptes Rendus Physique 4, 1021 (2003).

    Article  ADS  Google Scholar 

  3. W. S. Chang, H. Y. Choi and J. U. Kim, Jpn. J. Appl. Phys. 45, 7175 (2006).

    Article  ADS  Google Scholar 

  4. Z. Liu, G. Yang, Y. Z. Lee, D. Bordelon, J. Lu and O. Zhou, Appl. Phys. Lett. 89, 103111 (2006).

    Article  ADS  Google Scholar 

  5. Walt A. de Heer, A. Chatelain and D. Ugarte, Science 270, 1179 (1995).

    Article  ADS  Google Scholar 

  6. Y. Saito and S. Uemura, Carbon 38, 169 (2000).

    Article  Google Scholar 

  7. C. Li et al., Appl. Phys. Lett. 96, 143114 (2010).

    Article  ADS  Google Scholar 

  8. S. Fujii, S. I. Honda, H. Machida, H. Kawai, K. Ishida and M. Katayama, Appl. Phys. Lett. 90, 153108 (2007).

    Article  ADS  Google Scholar 

  9. F. J. d’Aragona, Electrochem. Soc. 119, 948 (1972).

    Article  Google Scholar 

  10. K. C. Park, J. H. Ryu, K. S. Kim, Y. Y. Yu and J. Jang, J. Vacuum Sci. & Tech. B 25, 1261 (2007).

    Article  Google Scholar 

  11. J. H. Ryu, K. S. Kim, C. S. Lee, J. Jang, K. C. Park, J. Vacuum Sci. & Tech. B 26, 856 (2008).

    Article  Google Scholar 

  12. G. Yue, J. D. Lorentzen, J. Lin, D. Han and Q. Wang, Appl. Phys. Lett. 75, 492 (1999).

    Article  ADS  Google Scholar 

  13. Z. Iqbal and S. Veprek, J. Phys. C: Solid State Phys. 15, 377 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Chang Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.W., Kang, J.S. & Park, K.C. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs. Journal of the Korean Physical Society 68, 528–532 (2016). https://doi.org/10.3938/jkps.68.528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.528

Keywords

Navigation