Skip to main content
Log in

Quantum noise on the coherent-transport protocol for clock synchronization

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The paper presents the synchronization accuracies of the coherent-transport protocol in the presence of quantum noise. Under the influence of bit flip noise, the accuracy will reduce to the standard quantum limit. When influenced by phase flip and amplitude damping, the accuracies are lower than the standard quantum limit in most cases. By comparison to the performance of the onequbit transport protocol and the entangled-states transport protocol, we found the accuracy of the coherent-transport protocol to be lower than the accuracies of the other two protocols in the presence of phase flip and amplitude damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Chuang, Phys. Rev. Lett. 85, 2006 (2000).

    Article  ADS  Google Scholar 

  2. V. Giovannetti, S. Lloyd and L. Maccone, Phys. Rev. A 70, 043808 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Ho, A. Lamas-Linares and C. Kurtsiefer, New J. Phys. 11, 045011 (2009).

    Article  ADS  Google Scholar 

  4. M. Xu et al., Phys. Rev. Lett. 113, 154101 (2014).

    Article  ADS  Google Scholar 

  5. S. Walter, A. Nunnenkamp and C. Bruder, Phys. Rev. Lett. 112, 094102 (2014).

    Article  ADS  Google Scholar 

  6. M. Krco and P. Paul, Phys. Rev. A 66, 024305 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Ben-Av and I. Exman, Phys. Rev. A 84, 014301 (2011).

    Article  ADS  Google Scholar 

  8. A. Tavakoli et al., Sci. Rep.-UK 5, 7982 (2015).

    Article  ADS  Google Scholar 

  9. A. Valencia, G. Scarcelli and Y. Shin, Appl. Phys. Lett. 85, 2655 (2004).

    Article  ADS  Google Scholar 

  10. V. Giovannetti, S. Lloyd and L. Maccone, Science 306, 1330 (2004).

    Article  ADS  Google Scholar 

  11. V. Giovannetti, S. Lloyd and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Monz, P. Schindler and J. T. Barreiro, Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  13. C. Lu et al., Nat. Phys. 3, 91 (2007).

    Article  Google Scholar 

  14. W. B. Gao et al., Nat. Phys. 6, 331 (2010).

    Article  Google Scholar 

  15. J. C. F. Matthews et al., Phys. Rev. Lett. 107, 163602 (2011).

    Article  ADS  Google Scholar 

  16. B. L. Higgins et al., Nature 450, 393 (2007).

    Article  ADS  Google Scholar 

  17. The LIGO Scientific Collaboration, Nat. Phys. 7, 962 (2011).

    Article  Google Scholar 

  18. X. Rong, P. Huang and X. Kong, EPL 95, 60005 (2011).

    Article  ADS  Google Scholar 

  19. M. de Burgh and S. D. Bartlett, Phys. Rev. A 72, 042301 (2005).

    Article  ADS  Google Scholar 

  20. J. Kołodyński and R. Demkowicz-Dobrzański, New J. Phys. 15, 073043 (2013).

    Article  Google Scholar 

  21. S. I. Knysh, E. H. Chen and G. A. Durkin, arXiv e-print, 1402.0495 (2014).

    Google Scholar 

  22. B. M. Escher, R. L. de Matos Filho and L. Davidovich, Nat. Phys. 7, 406 (2011).

    Article  Google Scholar 

  23. T.-W. Lee et al., Phys. Rev. A 80, 063803 (2009).

    Article  ADS  Google Scholar 

  24. J. J. Cooper and J. A. Dunningham, New J. Phys. 13, 115003 (2011).

    Article  ADS  Google Scholar 

  25. R. Demkowicz-Dobrzanski, Laser Phys. 20, 1197 (2010).

    Article  ADS  Google Scholar 

  26. S. Boixo et al., Laser Phys. 16, 1525 (2006).

    Article  ADS  Google Scholar 

  27. M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2006), p. 40.

    Book  MATH  Google Scholar 

  28. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2011), p. 374.

    Google Scholar 

  29. I. Bengtsson and K. Życzkowski, Geometry of quantum states: an introduction to quantum entanglement (Cambridge Univeristy Press, Cambridge, 2006), p. 265.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Haifeng, C. Quantum noise on the coherent-transport protocol for clock synchronization. Journal of the Korean Physical Society 68, 497–504 (2016). https://doi.org/10.3938/jkps.68.497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.497

Keywords

Navigation